o IACCESSION NUMBER)

(PAGES) {CODE)

: . {CATEGORY)
e Shma S o S .
- . » -

- - - - - 5 o
G i . S : : = : ‘%gwf’%“’%“ RS e o

-

S & = : 5 e e
i e e e i E o e
e . : e %;X@g&gs;% .

SR
Rel
St

: e
Wk”u?%w@%,%‘ G

i o
o - e e

.

5%
e
.
.

o e - SRsvena T 2 2 S %
S ¢ % 5 i N ¢ e
e R 4 & & i = L R
\.wm»m:« 5
S 0 < o o : S
e S e Soande e i
ErcEb e 2 s

L
e G
SRR
B ey
o
2 S

i;;,;;;

o

o

GSeATE
R

.

S
Sanin
L .
SRbaa e -
\g:w 4»“7»[34 e g S

e L

e o S ey 5 Shaw

i

e 3 S R N e Sl e s R man
. ey . -
e : - S By

.
G

% % 2 e B
e SR S P N e X .

e Lo T S G s s t‘

S o e e SRE b S e o SE e R Sl

st S e Shthne e SR Rl SRS T o

- - - . e L : L e e
i SR o % i S

i 2

A S bR S I et 45

o

% ey i R s B S

A S e TR et e S SRR
. o A s & 3 Sl e
: S e o i S e Gl g e e
o et e S e SRR o N Ee I e 5 SRR et
A = = T 5 e s

G & o
S

y‘;f . S o & A,
S S s L
S - - 2 e G s N

e
SRR e i o R T 3 % 2 e %
R R Sa o Sl 3 2 i e e S
G e o g e ,wa
e 2

o

S c Sl R SRR SR S
- s S L e e
H?Q = e s S S
Ry s
B o S
SR P

=

G

o
-

- e
YR e

=

o

e

o

Sttt R
Sl i

o
o

e

e T i R RS 5
- L e e - 3
e & i S
5 & e et

R

e , s A

Sysen b s e e ana

e e i o R 5 -
: .

Sy
5

-
i

G

o

e SR e

e
-

: 5 .
S 4 oo ety RS s a 5
o e o % v LR e e e S5 S e
3 = ey G & 2 S

¢ S

5

. Gt
a

G . : Sl
o S & s

% e B2 L0 Gl

R
s o e i 5 Soos e % : E i
e St Neneneaa g o i : Son: i o A P

MRl e s S ; S S e R D v e - e
Setieananda s R Sebavias Fieed it el IR e el 2 e S
s e Ce s SRR Sl e N et i e AR e oumehsRE S a e

o L e G S SR s o e L S g

% : S - : Lo N e T S
e

i ¥ e S o
DRty s TaR i = 7
S 3 RS % % AR =

& St

R o 2 ) S

e L neea . - o e - . - : . 2 e e :
S 3 e e Sl e . e ,?; & - i bl A R e e =

Nt Beo i i S P e % iR S e i & SR
e Ghoa o o B e S e = b s e
St - S 2 o o e e i e i e
SRR e

e

desiinaaaaainat

S

G
ST

e G o = -
i SR : = S : T e i : . ot
S ClEah i P e R s S i N e S s Sl S Rean i
R i o S S e ' o o 2 A 5 2 e i

Senn = s S S o S i e i

S
SRl e e sl & . | : N .
LS e e w5 e e e
R SnnG o PR
. ‘:‘{o ' "%b\‘ - : i G
e v
R e - .
T G .

.

i

o
o

.
S

o

W ¢ ey : - S
o B S e e oA Wi :
- . S o : o
S asion LR e e o G =
aaaa - e o o L 0 L o
Saunin e o . e
ey ey > o : e en N e o
e > B e e e B
o i e e

S S
P . e S e
ERls A e % i SN i e RS 7 Hnaane 3 e SERaLE
S e e S . e . e KQ’“’* .
S e = i e L e s y e e Sl : e
i T e e A S ¥ S and
SR ama s o
sy e e R 5 SRR SRt i
Sgtan o e S R e SR BN Ny b ey SR
Ao Tiaa e R e Sasa R Shaa e Shiiaai
Sl S R e S e e e e :
SR e e s 3 Tiiiiiea e PR
e e o S . L
4 G S nnse Py b e i S e R
o iy o e i 2
: S = )

i
et = i
ﬁ«@,«:ﬁ%«‘h;;»e.w,u\w‘&»;'w;g}. e B e el
S

e

St

e

7

L
o e

=

T i “

o 5

L

L

i
e

-

% S 4y S

S s S rsln e e
. P

e
fat e

Sk TRt
W

1” e
SR - e o T i : : S e .4 . .
st e e s e e S e S . -
G . Shea T - S aen e - S o i S
P .

N o
A

o e o
G R s S S
- e = S
s o Soaa
e

G : e e
i » S S Mo e S SR e 7
N S Ao e =
SSap P evaeees & G Sl 5

;

e

. aiamEa R R 5
2 e R R e = SR 4
& S 5 s SRl O e

-
i

Sl

Gl
5

o

Fin e
e

-
.
Sy

o

o
=
=

. - ;wkm; ; o . : T ¢ e - < :
S o Srielini Attt S e ‘ S d i e
o Sl St o o o i U At s

4

s

St
S

s
e

-

o

. i R
b R
S aeee

SRS S i St o . 4 : Soma SRR e

e s P i X S 5 o X : - L S o et e et

»%ﬁ P = S @ ' % D N G ’ ; 3 5 el SR s

Soiiiabe : i 5 S S : % 2 b S S | GREeT e s

. ; 3 = e o o

S
e
G
N ey
L

e

i —

A
e
i

e

s R
L
o it

e S
L
S

e

- T e
: = .

T

Sy
Crtaaeee i
e o

S e o T s e ¥

St G VEe e - . . S G A

5 % S i A 5 i 3 S Somban e s : M > R e
. e

.

S Pl L
SR oy 5 % X S SRR s e S M
e S i S e 5 o .
B A DRI R AN eyt o i AR AR S ] 3 SR R
R B e AR o B i SR R R R R Sl g P e
e SR e
e e e

e

i

S

e

et e
Shsen - e - SR
i e R g e R e

a R S = e % o

e ; e
o S e Ay o




Rensselaer Polytechnic Institute
Troy, New York 12181

Final Report - VolGI A 5

Contract No. NAS8-21131 g €
Covering period May 4, 1967-Nov. 3, 3
NATTONAL AERONAUTICS AND
SPACE ADMINTSTRATION

Analog Sensitivity Design
by James H. Rillings

Submitted on behalf of

Rob Roy
Professor of Systems Engineering






CONTENTS

Page
ABSTRACT .eaenee teemereassesassesessnnenss hsecssseencianoas . v
INTRODUCTION cecseriaitinanans ceeenaeens Ceseaaas cieeraancaaa L
1.1 General coeececeenencans cssesrsancsesccoecssanas . 1
1.2 Historical Review .eccovevcens teeesesacsetnnonnan ees 2
ANALYSIS OF SYSTEM SENSITIVITY +vvceoessasesscccanscesancnsnns 7
2 .l General * % 85 0 %000 00 ® 0 a8 2 8 08 00 0 A QRO 6P e e e 00 LRI Y IR N I ) 7
2.2 Direct Simvlation .cceesesn. esessrcasvsessasensenno s T
2.3 BSensitivity Operators .c...... N 9
2.4 Eigenvalue Sensitivity ......... N Ceeteceeanaann 14
SENSITIVITY DESIGN «veeesvessoccscasnnns srevescessanrsases s 18
3'1 Genera]— *® 8 .00 & 0 4 O 20 @ 0P e s e e e sa 4 8 8 & 9 0 000 0 S O89S a0 18
3.2 Sensitivity Coefficients .veveececeeoerncrennnanns .. 18
3.3 Sensitivity Equations ..ceeceeecess Gosevesesreasnnnos 21
3.4 Optimal Sensitivity DeSiZN ceveeeeeceoreeracnnnnnnnn 23
ANALOG SENSITIVITY DESIGN ..ceeeenesss secesesesennonsnsaasenas 27
bl General veeeeeeeveeceenes ceeens voeenn Cececrcecaanoas 27
k.2 Basic Technique ....oe.. ceenaen Ceeesessaesesenaennas 27
4.3 The Structural Method ....c.eevveeeens Ceeeeeeiaans .+ 35
L.b  Performance Index Sensitivity «c.c.... Ceeseraaas cee. L2
4.5 Trimming the Design +veeecovecoaenas Ceteeereeanas e kb
4.6 Second Order Example .eeeeecesonns B L6
CASE STUDY: FLEXIBLE BOOSTER CONTROL eveseccsccasoacssans veee 63
5.1 0eneral coeecccecencccnoon ceseees Ceteeseacerenaneans 63
5.2 The Problem seeeeesccscenasas Ceeseeeaateeteceenannan 63
5.3 Equations of MOtion seeeeececescssarccssoosoancnnses 69
5.4 gtate Equations of the BOOSEET «esveecsorersnannnans 76
5.5 Wind Distrubance ....eeeoss teeessecsnstnanesaaasnnan 81
5.6 The CONtTOL LAW «esescecncsoscsnocnnacasasnansennnes 85
5.7 Application of Analog Sensitivity Design «eevevevass 88
5.8 Time Varying Booster Simulation «.ceceeeencas eeesann 103

iii



6.

SUMMARY AND BECOMENDATIONS ceescececrocsonsscccacsnoscsoneses
6.1 SUMATY veeececaes tesressssennsen cesresssanacanias
6.2 Recomendations for Future WOrK .ceeseeevecenss
LI‘ERA‘W CIED ® 0 5 & 29 0 S PSS A # ® 9 0.0 0 0 9 & 0 S e 00 9 6 & 5 2 0 . o 9 0 0
APPENDICES R L LR PR PR eseseccne ceececnssnne
A. SENSTTIVITY EQUATION TINITTAT, CONDITIONS cevoess esne
B. ANALYTICITY OF SYSTEM BQUATIONS cvesscscessssoscons
C. TEIGENVAIUE SENSITIVITY ceccoccroncnscsnsosssanassone
D. TIME DERTIVATIVE OF ROTATING UNIT VECTORS +:eses cens
E. ANALOG SIMULATION OF BOOSTER coesccesscscccasascensas
F. TIME VARYING BOOSTER MODEL cosecessascecsse creenons .

iv

Page
119

119
120

122
12k

12k
125
127
131
134
137



ABSTRACT

The sensitivity of the response of a dynamic system to changes
in its parameters is of great importance in the design of systems.
Several methods of sensitivity analysis are reviewed: Direct Simulation,
&mﬂhﬁy%ﬂ%@mE@mﬁMe&mﬁwmm These methods are shown
to have various merits as tools of analysis, but cannot be used for the
systematic design of a low sensitivity system.

In order to develop a systematic design procedure, sensitivity
coefficients are introduced. These coefficients are in general the
elements of a matrix and are given by the derivative of the system tra-
Jectory with respect to the parameters of interest. The sensitivity
equations which describe these coefficients are derived and the
sensitivity design problem is defined for & constant gain, linear feed-
. back system.

The method of Analog Sensitivity Design (ASD) is developed to
solve the sensitivity design problem. This method employs the simul-
taneous solution of the state and sensitiviby equations of the dynamic
system on a repetitive operation analog computer and an automated hill
climbing iterative solution technique. A structural method is described
where ASD can be used when the response of an existing physical device
with an unknown mathematical description is to be desensitized to one
or more of its parameters. Some of the other unique advantages of ASD
are discussed and a simple second order example is solved.

A case study involving the design of a feedback control system for
the Saturn V - Apollo is presented. The control system is to be insen-

sitive to changes in the natural frequencies of the bending modes of



the vehicle. The equations of motion are derived, a brief discussion
of wind disturbances acting on the vehicle is given and a design wind
selected. ASD is then applied to a seventh order fixed time model of
the booster with a single bending mode included. The resulting de-
sensitized system is compared with an optimal system for nominal and
off nominal values of bending mode frequency. The desensitized system
maintains adequate control of the vehicle for bending frequency per-
turbations which are sufficient to drive the optimal system unstable.
The same two control systems are then applied to a full time varying
eleventh order booster model including three bending modes and a
design wind disturbance. Again the desensitized control system is
shown to be far more tolerant to changes in bending mode frequencies

than is the optimal systen.

vi



CHAPTER I

INTRODUCTION

1.1 (General

In recent years many powerful new mathematical techniques have been
developed for the analysis and design of dynamic processes. In addition
to these new techniques, classical techniques have been refined and
improved for application to large and sophisticated systems. Before any
of these techniques can be applied, however, a mathemsatical description
or model of the process must be obtained. This model usually consists
of one or a set of differential equations, in general nonlinear and time
varying. Using standard techniqpesh these equations can be reduced to

a set of first order differential equations as in (1.1-1).
F(x, %, m, @, t) =0 (1.1-1)

"where x is an n-vector, the dependent variable
X is the derivative of x with respect to t
m is an m-vector, the forcing function or control
q is an r-vector, a parameter of the system
t is the independent variable, taken as time
The appropriate design and analysis techniques can then be applied
to (1.1-1) with the results assumed to apply to the original physical
system. The question to be examined here is the success of this appli-
cation.
No matter how carefully the mathematical model (1.1-1) has been
formulated, there always exist differences between the model and the

physical dynamic process that it has been designed to represent. For



this reason the solutions to the system of differential equations (1.1-1)
cannot be said to represent the true behavior of the physical system.
There can be many sources of this difference. First it may be impossible
or simply impractical to realize mathematically either the functions or
the parameter values of the dynamic process, even assuming they are
known exactly. Second, in virtually all practical problems the values
of the parameter g is not known exactly; all physical components have
non-zero tolerances. Furthermore the equations (1.1-1) are generally
solved on either a digital or an analog computer. As is well known,
either of these extremely useful machines leads to finite errors in
the implementation of the solution of (1.1-1) even in the unlikely
event that 1t did represent the physical dynamic process exactly.

For these reasons it is important to develop a method of control
bsystem design that will insure that the response of the physical system
will be "close" to the response of the mathematical model in spite of
the small but finite differences in the value of parameters between
the two. If such a design technigue is possible, then full advantage
can be taken of the powerful mathematical tools of system analysis and
design available today. The properties of the dynamic system could
then be successfully predicted and its behavior evaluated with con-
fidence before actual device construction is begun. The method of

Analog Sensitivity Design, the subject of this paper, makes this possible.

1.2 Historical Review

The mast common method used in classical design to decrease the

sensitivity of a control system to changes in parameter values is the



addition of negative feedback or in cases where feedback is already
present, increasing its magnitude. H. W. Bode,l in his book which laid
the foundation for modern control theory introduced the concept of
parameter sensitivity. With few exceptions, however, the concept of
sensitivity remeined dormant until comparatively recently.

The use of feedback loops to reduce the sensitivity of plant
output to variations in the plant transfer function was suggested by

9

Horowitz” as a method of obtaining the advantages of adaptive systems
without paying the penalty of their complexity.
The major emphasis in these early studies was on the transform

approach to the study of sensitivity.9’lo’l3’21

The sensitivity
measure was taken as the transfer function relating the percentage
change of the system transfer function to the percentage change of the
parameter of interest. The pole-zero and root-locus sensitivity

13

problem was also examined by several authors, among them Kuo ~ and
Huang.lo The major difficulties with all of these frequency domain
techniques were their inapplicability to time varying or nonlinear
systems and the difficulty of drawing meaningful conclusions about the
time response sensitivity of the systems.

The study of time response or trajectory sensitivity of dymamic
systemns was begun in earnest in the field of differential analyzers
where accuracy has always been of great importance. Miller and
MMrrylh particularly, formulated the time domain sensitivity problem

in a meaningful way and derived the original differential equations

describing the sensitivity coefficients of a system.



Recently Dorato,5 Rohrer and Sobral,18 and Pagurek;5 have used the
concept of sensitivity for the study of optimal control of processes
with partially unknown parameters. Their primary concern was to make
the value of the optimal index of performance insensitive to variations
in the system parameters. Again there was little emphasis placed on
the sensitivity of the time response or the development of useful
design techniques. Holtzman and Horing8 have used sensitivity analysis\
to examine the effect of parameter variations on the solution to the
fixed terminal point optimal control problem.

Pagu.rek.l5 has shown that under certain conditions the open loop
and closed loop sensitivities of a given linear system are identical.
This result 1s strictly true only for infinitesimal parameter vari-
ations, however, and does not hold true in general.

3,16

Cruz and Perkins have recently attacked the problem of plant

Aéensitivity through the use of sensitiviby operators. They show that
for an open loop and a closed loop plant having identical responses
when parameters are at their nominal values, the closed lqop plant is
less sensitive to particular parameter variations than is the open
loop plant if a particular operator, which is a function of the para-
meter variation, 1s a contraction operator. This technique appears
difficult to apply to a general system and does not seem to offer any
promise of leading to a usable procedure.

The problem of synthesizing insensitive systems is a difficult

one and not many new results have been obtained in this area. Tomovicl9’20

11,12

and Kokotovic have indicated several time domain techniques that



appear promising. The major emphasis of their work, however, has been
in the analysis of the parameter sensitivity of existing systems.
Kbkotcvic'sll method of sensitivity point analysis makes possible the
simultaneous evaluation pf all of the sensitivity coefficients of a
dynamic process.

Tuel22 developed a synthesis procedure which is valid for both
linear and nonlinear plants. His method results in an open loop con-
troller which limits trajectory dispersion due to uncertainities in
plant parameter values. The standard state variables are sugmented
with sensitivity variables representing the sensitivity coefficients
of the open loop system. Standard control signal optimization tech-~

12,17

nilgues were used to solve the resulting optimal control problem.

The major disadvantage of this method is the open lcop structure of

the controller and the consequent loss of nominal response acceptability.

PN

Dougherty6 attacked the synthesis problem in a similar fashion
except for the use of closed loop sensitivity coefficients. The use
of closed loop coefficients required the specification a priori of the
structure of the controller. Once this was done, the closed loop
sensitivity coefficients and their describing differential equations
could be adjoined to the state equations to form an augmented optimal
control problem. The index of performance was made a function of both
the states and the sensitivity coefficients such that the system re-
sponse was optimized while simultaneously minimizing a measure of the

sensitivity. The parameters over which the optimization took place



were the gains in the feedback controller. The problem was solved
using the techniques of parameter optimization. The chief difficulty
of this technique is the necessity of solving the two point boundary
value problem that results from the parameter optimization and the very

slow convergence of the gradient technique used.



CHAPTER 2

ANALYSTIS OF SYSTEM SENSITIVITY

2.1 General

In this chapter several technigques of sensitivity analysis will be
examined and the possibility of their providing a useful method of
synthesis discussed. The object is to examine a dynamic system for the
effects of inadequate knowledge of parameter values. The nominal value
of the parameters can be assumed known, but their actual values are
unknown and unmeasureable.

Consider for example the trajectory of a particular dynamic process
in state space. The initial and terminal points are fixed at Xo and
XT as shown in Figure 2-1. The solid line indicates the trajectory the
process will travel between XO and XT when all parameters take on their
.. nominal values. When the parameters are perturbed the trajectories
exhibit dispersion about the nominal path. The locus of trajectories
caused by "small" perturbations in the plant parameters form some sort
of tube in state space. Sensitivity analysis attempts to place bounds
on the diameter of the tube once bounds on the parameter variations are
given. The smaller the diameter of the tube of trajectories, the less

sensitive to parameter variations is the dynamic process.

2.2 Direct Simulation

The sensitivity of dynamic systems can be studied using either
digital or analog computers. The most straight forward and commonly
used method is by direct simulation. The differential equations of the

system (1.1-1) are solved automatically for a range of parameter values
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9.
4y + t;qi i=1, 2,...,8 where q = q.O is the nominal value of the
parameter.

F(x, x, a4 t) =0

x, x, q, + A 9 t) =0 (2.2-1)

.

F(x, x, q, *+ A gp t) =0
These parameter values are selected to cover the entire expected range of
perturbations. If the solutions of (2.2-1) are all "close" in some
respect, are all acceptable in terms of the purpose of the system and
do not exceed component structural limits, then the system described by
(2.2-1) is said to be insensitive to variations in the parameter q. If,
however, the solutions are not close in the sense of Figure 2-1 or if
~some of the solutions are unstable, then the system as it stands is
obviously unacceptable. The guestion then arises as to how the systen
can be made less sensitive. This simple method of sensitivity analysis
cannot answer that gquestion. In spite of this drawback, however, the
ease with which the equations (2.2-1) can be solved by direct inte-
gration makes this technique a good first step in the analysis of the
sensitivity of the mathematical model of dynamic processes. Often the
system (2.2-1) is found to be sufficiently insensitive to the expected

parameter variations and analysis need proceed no further.

2.3 Sensgitivity Opera.tors3’l7

Traditionally the problem of decreasing the sensitivity of the
response of a dynamic system to parameter perturbations within the

systen is solved by adding additional negative feedback around the



10.

process. This section examines the effect of doing this and the
possibility of developing a design technique utilizing this procedure.

In order to examine the effect of additional feedback on parameter
trajectory sensitivity the two systems of Figure 2-2 and Figure 2-3
will be studied.

The controllers C and CO are so constructed that for nominal para-
meter values P = P(qo, t) +the response of the two systems to iden-
tical inputs is identical. P(q, t) can be regarded as a linear, time
varying plant operator dependent on the parameter g.

The output of the open loop plant for nominal parameter values,
when forced by the input r(t) is given by

x () = (g, ) u(t)

or

1l

x (6) = B(a,, ©) C_(t) x(t) (2.3-1)

Similarly, the output of the closed loop plant under the same conditions

of nominal parameter values and forced by the input r(t) is given by

x,(8) = Hay, ) o(s) [=() - 1(6) x,(6)]

or, solving for Xc(t)

x(8) = [T+ Bag, ©) c(e) 18)] R, ©) o(e) x(8)  (2.3-2)

where I 1s the identity operator and the superscript -1 indicates the
inverse operator.

Let P(qg, t) = P(qO + A g, t) be the plant operator for the
perturbed parameter values q = ER + A q. Then the output of the
plant will also be perturbed from its nominal valve. Let this per-

turbation be eo(t) and ec(t) for the open loop and closed loop
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12.

respectively. Then these perturbations are given by

e (e, t) =x(a, t) - x(a + &g, t)
, (2.3-3)
ec(Q: t) = Xc(qo). t) - xc((lo + O d, t)

The closed loop perturbation can be written as

clat) = {[r2(a,) ™ 2(ay) ¢ - [r(ayr A @) o] ™ Har A 0) =

(2.3-4)
where the time variable has been suppressed for brevity.
Define the operators
AP = P(q +8& q) - P(q,)
(2.3-5)
-1

(q) = [ + 2(a) cu] ™ a) ¢
then the closed loop trajectory dispersion is given by

e = [I + P(g + q) CH] -t [APC(HT(q ) - I] r (2.3-6)

c o] 0

Recall that for nominal parameter values q = q, the open loop and

closed loop systems give ildentical outputs for identical inputs.

Therefore
x(a,) = x(q))
and
u(a)) =ule) = ¢ [e(s) - B x(¢)] (2.3-7)

Using the fact that

x, = [I + PCH]  pe x(b) (2.3-8)



13.
gives the relation
-1
uo(qo) = Cr - CH [I + PCH] ¢ r(t) (2.3-9)

which when combined with the definitions (2.3-5) gives the following

expression for the open'loop plant input function
u(a,) = ¢ [ - m(e)] () (2-3-10)
From the diagram of the open loop system, Figure 2-2, it is evident that
() = [®(a) - (o, +& @) u(t) (2.3-11)
Using (2.3-11) with (2.3-10) and (2.3-5) gives an expression for the
open loop trajectory dispersion
e (e t) = Arc [ m(a) - T] x(%) (2.3-12)

Finally, combining the expressions for closed loop trajectory dis-
persion (2.3-6) and open loop trajectory dispersion (2.3-12) gives the

following relation
-1
e, = [T+ ®q, +8a t) CH] o (2.3-13)

Thus the perturbations of the closed loop system due to a parameter
variation are related by a time varying linear operator (2.3-14) to

those of the open loop systemn.

(g, + & t) = [I + Mg, +Aq t) CH] “ (2.3-1%)

What does this indicate about the relative sensitivity of the two
systems to parameter variations? If the norm of the output dispersion

is taken as a measure of the sensitivity, then from (2.3-13)



1k
fecll & N2Coe v a0 ol e (2.315)

Thus if | L(qO +4 q)“ € 1 +then the closed loop trajectory
dispersion is less than the open loop trajectory dispersion and the
closed loop system is sald to be less sensitive than the open loop system
for that particular parameter variation A q. Unfortunately this gives
no information about the relative gensitivities for any other parameter
variation. To get a complete picture of the parameter sensitivity of
the closed loop system (2.3-14) would have to be evaluated for many
values of QA q Jjust as was (2.2-1). Thus the method of sensitivity
operators appears to have no practical advantage over sensitivity analysis
by direct simulation. In general, (2.3-14) is much more difficult to
evaluate than is (2.2-1).  Additionally, there is again no way to proceed
in a systematic fashion if a particular closed loop design proves to be
" more sensitive than the original open loop design. Thus while the
technique may prove to be useful theoretically, there is some doubt as

to its practical utility.

2.4 Eigenvalue Sensitivity

A very useful techniqpe for studying the properties of linear, time
varylng systems involves the plotting of the poles and zeros of the
system transfer function. It is well known that the poles or eigenvalues
of this transfer function completely determine the stability and shape of
the system transient J:'espon.fs.e.lL Thus it is natural to examine the
sensitivity of the eigenvalues to changes in the parameters of the system.
In what follows the parameter q will be assumed to be a scalar in order

to simplify the notation.



15.

Assume the linear, time invariant dynamic system is described by
the homogeneous, constant coefficient differential equation (2.4-1).
L
x(t) = A(q) x

x(0) = ¢

(2.4-1)

il

where X 1s the n dimensional state vector
% is the time derivative of x
A(q) is the n x n system matrix dependent on g

q is the scalar parameter of interest with nominal

value qO

The eigenvalues Ki and the corresponding eigenvector Ve for the

nominal value of the parameter g are defined by
May) vi(ay) = hy(a,) vylay) 1=1,2..,1  (24-2)

The perturbed system, with q = 9 + &g has eigenvalues and
elgenvectors given by

Alq, + &) vi(a) +&a) =r(a +Bq) v,(g +AQ) (2.4-3)

i=1,2,...,n

Subtracting (2.4-2) from (2.4-3) gives

aq, + &) vi(a +8a) - Ag) v,(a) (2.4-h)

- %'i(qo + AQ.) vi(q'O + Aq.) = Xi(q'o) Vi(qO) = 0
Equation (2.4-4) can be expanded in a Taylor Series about the nominal
parameter value g = a4,

< [A<qo> vi(qo>] (a-q,) - 3‘?@ 1 r(a,) V;-L(qo)l (a-90) + 0 (a-q,)°
(2.4-5)
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where O(q_—qo)2 indicates an error term of the order (qfqo)e.

For sufficiently small quqo] the linear terms of (2.4-5) will

dominate and the equation becomes

_g_i (Av;) - _g'i (hvi) =0 i=12,...,n

Taking the indicated partial derivatives yields

22 () vy(a) + M) It (a) = 22 () vylay) + nylay) 2 (a)
i=1,2,...,n (2.4-6)

Next let uy be the ith eigenvector of AT, Recall that AT nas
identical eigenvalues with A but the eigenvectors are different. The

u; are then given by

ATy =g i=1,2,..0,10 (2.4-7)

Transposing (2.4-6) and postmultiplying by u; gives
v, T A, T v, T
W@ u e (B T -t A u s (B AT
(2.4-8)

where all terms are to be evaluated at q = q_ . Equation (2.4-7) is

next combined with (2.4-8) and the fact that kiT =N; used to obtain

s
%(%)=Vi (q)ﬁ(q) u,(q,)

= (2.4-9)
vy (a,) vy (q)

Equation (2.4-9) expresses the éigenyalue sensitivity of the system

(2.4-1) with all terms evaluated at the nominal value of the parameter.
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This is an efficient method of investigating sensitivity since unlike
the previous methods only one evaluation is needed with the results
holding for all small parameter variations & gq. If a system is found
to be highly sensitive with respect to a particular eigenvalue it is
not clear how the system should be redesigned to reduce this sensitivity
without increasing the sensitivity of the other eigenvalues to
unacceptable levels. Thus while (2.4-9) provides a rapid and simple
tool for the comparison of the relative eigenvalue sensitivity of com-
peting systems to small parameter variations, it does not provide a

systematic procedure for the systhesis of an ingensitive system.
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CHAPTER 3

SENSITIVITY DESIGN

3.1 General

The previous chaptér examined several methods of analyzing the
sensitivity of dynamic systems to parameter variations but none of the
methods showed any promise of being extendable to a tractable design
technique. In this chapber the problem of sensitivity design is in-
vestigated. To this end sensitivity coefficients are defined and the
differential equations describing their behsvior are derived. It is
shown that these sensitivity equations are always linear regardless of
the form of the equations describing the dynamic process being examined.
Finally, Dougherty's method6 of using parameter optimization for
sensitivity design is briefly reviewed and a method suggested for
"omercoming its chief shortcoming which is the difficulty of solving
the resulting two point boundary value problem.

3.2 gensitivity Coefficientslu’l9

When the sensitivity of a dynamic process to certain parameters is
to be investigated, it is necessary to examine the dispersion of the
solutions of (3.2-1) for varying values of the parameter g.

F(x, x, my @, t) =0 (3.2-1)

In order to facilitate this examination (3.2-1) is rewritten as a
set of couple first order differential equations

%=f(x, m, q t)

x(0) =¢ (3.2-2)
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where x is an n-dimensional state vector
m is an m-dimensional control vector
g is an r-dimensional parameter vector
c is an n-dimensional initial condition
It is assumed that a unique solution x(t) with =x(0) = ¢ exists
once the control m(t) and the parameter ¢ have been specified.
Since it is generally agreed that closed loop or feedback control
is desirable in the control of dynamic systems the control law is assumed
to be of the form
m=m(x, t) (3.2-3)
For a given control strategy let the corresponding nominal tra-
Jectory for q = d, be given by

x = x(m ag, t) (3.2-4)

A quantitative measure of the dependence of the solution of (3.2-2)
on the parameter 49 can be obtained by expanding the solution of

x(q, t) about the nominal value of the parameter q = 9,

x(q, t) = x(q,, t) + —g—z (2, )a-q.) + O (a-q )" (3.2-5)

where the partial derivatives are evaluated at ¢ and O(q_-qo)2 in-
dicates that the remainder terms are of second order in (quo)- The
partial derivative symbol actually indicates a matrix which is defined by

bx bxi i

39, 7oy

l, 2,--.,1’1 (3.2-6)
J=1, 2,...,7
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The elements of this matrix are defined as the sensitivity

coefficients of the process and are denoted by

Z(j)___bxi i=1,2,...,n

‘ (3-2-7)
1 09 =1, 2,...,r

In a sufficiently small neighborhood about the nominal value of the
parameter 4y these sensitivity coefficients specify the deviation of
the solutions of (3.2-2) from nominal due to the parameter variation

q = (q-qo). Thus the norm of the sensitivity vector “ z(j) “ can be
taken as & measure of the trajectory dispersion of the dynamic system
due to the perturbations of the parameter qj'

There is another manner in which the definition of sensitivity'
coefficients can be approached. In Section 2.2 the sensitivity of
(3.2-1) to changes in parameter values was examined by means of direct
.. simulation of the differential equation on an analog or digital computer
for various values of the parameter ¢g. Consider the results of two

such simulations having the solutions X and x where

%o = Mo ©) (3.2-8)
x=x(q +8 q t)

and the parameter variation has taken place only for a single element q,j
of the parameter vector (.

Comparing these two resultant trajectories give the following ex-
pression for the relative sensitivity to the parameter qj

x(q, + Bg,, %) - x(a, t)

qu




21.
If this has a limit as Aq_j ~& 0, then

. o, + By, ©) - xlay ©) dxapt) ()
A;m-vo A 4 EEEE e

This is defined as the sensitivity coefficient of the state vector
x with respect to the parameter q_j and the norm l‘z(‘])“ gives a
measure of the sensitivity of the trajectory x = x(q, t) to small
changes in q‘j .

3.3 Sensitivity qu.ationslh’ 19

If the sensitivity coefficients are to be used as an aid in system
design there must be an efficient method of calculating them. Assuming
the state equations (3.2-2) are known, a set of differential equations
describing the’sensitivity coefficients can be derived. It will be
shown later that the sensitivity coefficients can be obtained by
simulation even when the state equations are not known.

Taking the derivative of the state equations (3.2-2) with respect

to the parameter q gives

O (dx, Ofdx O0rdm OF

33 (3%) " 9x Do ' om 21 ' 3a (3.3-1)
Using the closed loop control strategy of (3.2-3) gives

dm _ Om Ox

22 °ox 04 (3.3-2)

dx dx

X X .
i _— and ar 11 a d to be cont o
Also, since YR 2% n _ﬁ e a ssume o be continuocus

functions of q and *, order of differentiation can be interchanged and

® ¥k _ 2 2
2 30 -2 3 (3-3-3)
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Combining (3.3-2) and (3.3-3) with (3.3-1) gives

& @5 -(pL. 3 3n 3x, 21 (3.3-4)

where all partial derivatives are understood to be evaluated at the
nominal parameter value 'q = g,- If the definition of the sensitivity
vector z of (3.2-9) is used, equation (3.3-4) can be written more com-
pactly as

. bf 3f3m or
S TRE T FAEr I (3.3-5)

Since the parameters are assumed to have no effect on the initial

conditions of the system, then

x(q, + 48 q, 0) - x(q, O)
z(0) = 1lim =0 (3.3-6)

When the parameter variations are such that the initial conditions
" of the system can be effected then (3.3-6) no longer holds. For a
discussion of this case see Appendix A.

The sensitivity coefficient vector z(t) can thus be obtained by
the solution of (3.3-5) with 2z(0) = O. The sensitivity equation is
always linear, regardless of the linearity of nonlinearity of the dynamic
system (3.2-2). An examination of the sensitivity equation also reveals
that the homogeneous part is identical to the state equation. This
interesting observation is the basis of the structural method of solving
the sensitivity equations that will be discussed in Section 4.3. It
should also be noted that (3.3-5) is valid only if the solution of the
state equation (3.2-2) depends analytically on the parameter g. This

specifically excludes systems in which g can vary in such a manner as
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to change the order of the state equation. That is, no variation of g
can make the coefficient of the highest derivative of =x in the
original differential equation of the dynamic process equal to zero.
Appendix B discusses this in more detail.
At this point it is.well to recapitulate. For the set of differ-

ential equations

% (f(x, my, g, t)

(3.3-7)

x(0) = ¢
a measure of the relative sensitivity of the solution x(g, t) to
variations in the parameter qj is given by the norm of the sensitivity

vector “z(j)“ where

) Bz, 222y () -3 (3:3-8)

~‘e'

It is clear that a system that is to be insensitive to parameter
kvariations q_‘j mist in some sense make “z(j)l\ as small as possible
consistent with the other criteria of system performance. Dougherty
attackedthis problem using an optimization technique which is briefly

described in the next section.

3.4 Optimal Sensitivity Design

Dougherty6 sought to develop a procedure to synthesize a control
system that was insensitive to parameter variations but did not redquire
on line computation in the form of a sensitivity computer as do other
optimal techniques.

The dynamic system state equations (3.3-7) and the corresponding
sensitivity equations (3.3-8) are put into the form of a parameter

optimization problem in the following manner.
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Assume the control lawm(x, t) is chosen to be directly pro-

portional to the state vector of the dynamic process
n(x, t) = - K x(t) (3.4-1)

where K. is an (m x n) time invariant gain matrix. The object of
the optimization is first to obtain satisfactory nominal response of the
system and second to limit the sensitivity of the process to changes in

parameter values. This may be expressed mathematically as

min (J + 9)
K
where
tf'
J = I fo(x, —KTX, 9 t) dt
© (3.4-2)
(v
£
3 = I go(z, t) at
0
where
% = f(x, m, q, t) x(0) = ¢
7 = (% - -g—ﬁ k) z + %—g;Z(O) =0 (3.4-3)
K =0

The usual techniques of parameter optimization are than applied

to these equations yielding the two point boundary value problem6’12



Ne

= f(x, m, g, t) X(O) =cC
m= = I{TX
. y T
P - o T p(t,) =
2-3r 2y, o(t,) =

Ce

['Alkxa'rlkza].dt=o @ =

0

where

o=1

z(amR 1+ Oy 85)

i=1

b:f

e | 2

o I £
| 27507, E o7y

1,2,

ceeynd

2f.
Y i

PETH

32
am aq

25.

(3.k-1)

i,3=1,2,..

i=1,2,.

j=1,2,..

Needless to say, the solublon of this two point boundary value problem

is a formidable task.

steepest descent or gradient technique with some success.

Dougherty applied a relaxation method based on

The chief

difficulty with the gradient method is the very slow convergence in a

neighborhood of the optimum. For the simple second order example shown

in Chapter 4 the solution time was about 15 minutes on an IBM 360/50

.,m

oyn
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digital computer. PFor large scale problems the time becomes prohibitive.

In addition to the difficulty of numerical solution of the two
point boundary value problem of (3.4-4), there is the problem of
choosing the weighting fgnctions fo(x, m, 4, t) and go(z, t) which
specify the desired performance of the dynamic system. If the problem
being examined is described by a set of linear differential equations
and the performance indices are taken to be quadratic functionals of
state, control and sensitivity, this becomes the simplest form of
optimization problem. Even then, and when a single varying parameter
is involved, for an nth order process it is still necessary to select
a state weighting matrix of n2 elements, a control weighting matrix
of m? elements and a sensitivity weighting matrix of n2 elements.

In short, Dougherty'é method is useful for relatively simple
problems when a lot of digital computation time is available and when
-the designer's experience with the techniques of optimization allows
him to quickly choose a good set of performance index weightings. For
larger problems a more efficient method of solwving the sensitivitydesign
problem of (3.4-2) and (3.4-~3) is needed. One way would be to speed up
the numerical solution of the two point boundary value problem (3.k-4)
using a technique such as second variations. There are many problems
associated with applying second variations to (3.4-4) however and it is
not abt all clear that there would be a great saving of computation time
without a great deal of increased programming complexity. A more
efficient way is to solve the sensitivity design problem directly using
automated analog computer techniques. This method 1s discussed in the

next chapter.
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CHAPTER 4

ANALOG SENSITIVITY DESIGN

4.1 General

Chapter 3 introducéd sensitivity coefficients and the differential
equations which describe them. It was seen that the norm of the
sensitivity vector “z\ glves a measure of the trajectory sensi-
tivity of a dynamic process to parameter variations. Dougherty used
this fact to factor sensitivity limiting into the standard parameter
optimization problem. The solution of the two point boundary value
problem which results from this approach is difficult enough to make
the utility of this method questionable for large scale problems. The
method of Analog Sensitivity Design described in this chapter achleves
the goal of developing a systematic and efficient design procedure of
limiting trajectory dispersion which is applicable to realistic
problems. The procedure is such that the designer can directly observe
the tradeoff between system nominal response and insensitivity to para-
meter variations. A.method of completely automating the design procedure
is given and a simple illustrative example is solved to illustrate the
Analog Sensitivity Design method and compare it with other techniques.
For simplicity the development will assume a single input system with
a single varying parameter although neither of these restrictions is

necessary.

4.2 Basic Technique

Analog Sensitivity Design offers a simple, direct method of solving

the sensitivity design problem posed in Equations (3.4-2) and (3.4-3).



That is, to determine the set of feedback gains K that give the best
compromise, in some sense, between performance of the dynamic system
for nominal parameter values and insensitivity to variations in these
parameter values. From this point, the linearized or incremental form
of the equations of the dynamic system will be used. Also, the per-
formance criteria will be assumed to be expressible in terms of the
time integral of quadratic functions of the state and sensitivity
vectors. Both of these restrictions are made only to make more de-

finite the details of what follows and are in no way necessary for the

application of the Analog Sensitivity Design Technique. The sensitivity

design problem can now be stated as follows. Determine the set of feed-

back gains X¥ such that

K*={Klm}i§(J+3)

where

28.

t
o 7
J=S (x sx + m Rm) dt
0
t
£
3=I ZTWZdt
¢
®
x=A(qg, t) x+B(g t)m x(0) = ¢ (k.2-1)

m=-K x
(a - 3% 2+ (32 (a,) - 82 (q,) &) x 2(0) = 0

N @

e
]

0
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This last restriction, that feedback gains be constant is made for
several reasons. First, most actual control systems use constant or
piecewise constant gains. Second, if time varying gains are considered
then 1t becomes necessary to incorporate online computation in the form
of a sensitivity computer with a consequent increase in complexity and
cost and a decrease in reliability. Third, constant gains allow the
use of greatly simplified analog computer techniques.

Combining the control law m = - K:x and the state equation of
(k.2-1) gives the modified state equation.

x=(a-BK) x
x(0) = ¢ (h.2-2)

This is the homogeneous part of the sensitivity equation

Eoa-m® o (82 (e - 32 (a) KN = (4.2-3)
z(0) = 0

The first step in the solution of the sensitivity design problem
(4.2-1) is wiring the analog computer to solve (L4.2-2) and (L.2-3)
simultaneously. This is shown schematically in Figure 4-1l. This shows
the simultaneous or parallel solution of the two sels of equations.

To perform the solutions simultaneously two complete models of the
dynamic process (4.2-2) are required, one for the state equations and
one for the sensitivity equations. It is possible, however, to solve
these sequentially. This is feasible because the solution of the state
equation (4.2-2) is independent of the sensitivity vector described
by (%.2-3). To perform the sequential solution, (%.2-2) is first solved

by analog simulation and the state vector =x(t) recorded.
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This recorded x(t) is passed through the gain w where
oB T
- 53 (%) K) (h.2-h)

and then'applied to the same simulation network as a forcing function.
The output of the simulator is now z(t), the sensitivity vect@r
solution of (4.2-3). This serial technique is not directly applicable
to the synthesis procedure of Analog Sensitivity DeSign. For this
the paraliel solution method must be used and two separate models are
required.

Once the solutions of the state and sensitivity equations are
available for some initial value of K, it 1s a simple matter to compute

A
the values of the performance criteria J and J

t
£
J = I (xTsx + m" Rm) dt (k.2-5)
0
tf
/‘} = j (ZT wz) dt (k.2-6)
0

Since the three variables x, m, and 2z of (4.2-5) and (4.2-6), are
all functions of the gain vector K, these criteria can be minimized by
adjusting the elements of K. This is the technique of Analog
Sensitivity Design. The elements of K are adjusted in the manner
described by the flowchart of Figure 4k-2.

The state and sensitivity equations (4.2-2) and (4.2-3) are solved
for a particular value of K = Ki and the value of the performance index

A
I=J +dJ compubted. Each gain element is adjusted in turn by discrete
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steps of magnitude A K and in either a positive or a negative direction
until I can no longer be decreased. Then the next element of X 1is
adjusted in a similar manner. The process continues, readjusting each
element of K in turn until no increment of + A X in any element
will decrease I. For sufficiently small A K, the K = Kf which is

the solution of the sensitivity design problem(4.2-1)lies within a
hypercube of side 28 K of this value. If more accuracy is desired,
K can then be initialized at a value within this hypercube and the

step size @ K reduced. Continuing this process will yield Kf to
ﬁithin the accuracy of the computing equipment.

This technique is a variation of the hill climbing method.

Stability and convergence are guaranteed because the surface formed by
the performance index I is convex and its value 1s decreased at every
iteration. Figure 4-3 illustrates a typical sequence of gain adjustments
. for a two dimensional gain vector.

The operations described for the Analog Sensitivity Design solution
of the sensitivity problem (4.2-1) can be carried out manually or if
the anslog computer has even elementary logic capability they can be
completely automated using Figure 4-2 as a guide.

This method of solution would not be feasible on a digital computer
because of the many solutions of the state and sensitivity equations
required. In this respect the Analog Sensitivity Design Technique is not
an efficient one. On a modern repetitive operation analog computer,
however, a complete solution of these equations even for a 100 second

interval can be carried out at least five times per second independent
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of the order of the equations. Thus the hill climbing solution of the

sensitivity design problem on the analog computer can be performed at
about 300 1lterations per minute for a dynamic system of virtually any
order having a settling time of 100 seconds or less. Of course the
larger the dynamic system being investigated, and the higher the order
of the describing differential equation, the more analog computation

equipment is required to implement the solution.

4.3 The Structural Method

Analog Sensitivity Design as presented above requires a mathematical
description of the dynamic process. The starting point for the pro-~
cedure is the set of differential equations (4.2-2). There are often
cases, however, when the engineer is presented with an actual subsystem
and is required to minimize the sensitivity of that physical device to
..a& particular parameter by setting the values of certain gains. Using
Analog Sensitivity Design this desensitization can be performed directly
on the device without having to resort to a mathematical model of
questionable accuracy. This section describes a structural method23 for
doing this for linear dynamic systems.

Consider the dynamic system composed of n linear elements as
shown in Figure 4-4. The input and output of the system are x(t) and
y(t) respectively. The input signal to the 1" clement is denoted by
xs and the output of the ith element is denoted by ¥i- The response
of the ith element at time t +to an impulse at time T is denoted by

hi(t,T'). The dynamic characteristics of the ith element can then be



36.

= y(t)

FIG. 4-4 LINEAR DYNAMIC SYSTEM
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denoted by the relation

t
yi(t) = S hi(t,‘r) xi('r) ar i=1,2,...,n (k.3-1)
0

Furthermore, the topology of the system or the interconnections

between the elements can be expressed by the algebraic matrix equation

Au + Bv = O (4.3-2)
where
X Iy
*2 3.’2
u = e v=1}]se (4.3-3)
*n yn
L X y
1 -t

The A and B matrices are constructed in the following manner.
Assume the system (4.3-1) has m separate interconnections between
B elements with each signal flow path counting as one interconnection. For

example in Figure L4-U4 there are five interconnections labelled cl

through c5, and therefore m = 5. Then for each of these interconnections
or signal flow paths a row of A and a row of B are defined. If inter-

connection c¢. goes from x., to y, tTthen a,.,=-1 and b, =+ 1.
i J k 1 ik

If ci goes from Y to Xj, then aij =+ 1 and bik = ~ 1. Thus

the A and B matrices for the system of Figure L4-3 are

1 0 1 0] ) o -1
0O 0 0 © 0 ©
A = o 1 0 o© B= |-1 o 1 (4.3-k)
0O 0 1 o0 0O -1 0 0
O 0 0 1 0 0 -1 ©
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These matrices completely determine the structure of the physical
system.

Now the numbering of the elements of the system is done in such a
manner that the first r € n elements depend on the parameter ¢
while the remaining (n-r) do not.

The sensitivity vector is defined as
dv
- A L,3~
da (4.3-5)

where now the outputs of the linear elements take the role of state
variables.

Next define a completely different system which is called the
sensitivity system. The structure of this sensitivity system can also
be completely described by a topological equation

A'p+B" =0 (4.3-6)

In order to keep the characteristics of the sensitivity system
similar to those of the original system, their structures are arbi-
trarily made identical. That is

At = A B' =3B
The sensitivity structure is thus defined by
Afg+Bo=0 (&.3-7)

If (4.3-2) is differentiated with respect to the parameter q and

the assumption made that no variation of the parameter changes the inter-

connections between system elements then

du 5OV _ -
Abq+Bbq"o (4.3-8)
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If this equation is compared with (4.3-7) it can be seen that under

the restrictions made

g =%—‘§ 0 =%‘é (%.3-9)

Thus the variables in the sensitivity system are the desired
sensitivity functions of the original system. It remains, however, to
determine the characteristics of the elements in the sensitivity structure.

Differentiating the defining equation of the linear elements (k4.3-1)

with respect to the parameter ¢ gives

Q75 K 5
3T - S (%, T) S YR (7) a? i=r+1,...,n (%.3-10)

0

for the elements independent of the parameter and

R t . t h-(t)'r)
%—Zﬁ = j' b, (t,7) %-z—l r) ar + S islq— %, (P) av (4.3-11)
0

0
i=1,2,...r
for the elements of the dynamic system that depend on the value of the g.

But using (4.3-9) and (4.3-3) these derivatives can be written as

byi _ 075 o
24 P2 i
2%  du. (k.3-12)

1Y) —ﬁ_=¢i

Using these relations (4.3-10) and (4.3-11) become

[ It hi(t,‘r) ¢i(‘r) ar + It é—h-;-g-zil'—z xi(‘r‘) ar i=1,2,...,r
0 0
6, =4 (4.3-13)
t
S h (4, 7) 4,(7) a7 i=r+l,...,n
\ 0
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This says simply that the elements in the sensitivity system are
identical with those in the original dynamic system when those elements
are independent of the parameter ¢. When the elements of the dynamic
system do depend on the value of the parameter the elements in the
sensitivity system are still the same as those in the original dynamic
system with one exception. Added to the output of these elements is a
signal formed by passing the input to the corresponding element in the

dynamic system through a new element having the impulse response.

oh,(t,7)
K (6,T) = —3a (q,) (4.3-14)

When this structural method is applied to the system of Figure L-4
and it is assumed that only the element h3 depends on the parameter g
the sensitivity structure of Figure 4-5 results. This example indicates
the simplicity of the method and the ease with which it can be applied.

The one drawback to this method of obtaining the sensitivity
coefficients is immediately obvious. It is necessary to know how the
impulse response of the linear elements changes with variations in the
parameter q in order to construct the k; of (4.3-14). Once the
system has been broken down to the elemental level, however, this infor-
mation would usually be available or could be constructed experimentally
with acceptable accuracy.

In summary, the sensitivity coefficients zs of a physical system
consisting of the interconnections of linear elements can be determined
in the following manner. A sensitivity model is used which is identical
to the model of the dynamic process except for the addition of extra

signals at the output of each element which is dependent on the parameter q.
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These signals are the inputs of the corresponding elements in the physical

system passed through additional elements with the impulse response

o1, (4, T)

ki(t,‘r ) = —S—E—

Once the sensitivity coefficients have been constructed using the
sensitivity system, the Analog Sensitivity Design technique of Section
k.2 can be applied directly with one unfortunate difference. When
dealing with the physical system rather than an analog simulation it
is in general impossible to speed up the solution. Each iteration of
Figure L4-1 must take as long as the system settling time. This is the
price that must be paid for the design of a desensitized system without

knowledge of the differential equations describing the over-all system.

4.4 Performance Index Sensitivity

After a design has been accomplished it is of interest to determine
just how insensitive the system has been made. The main measure of this
is of course the relative magnitude of the sensitivity ccefficients
before and after the desensitization. Some times, however, the relative
sensitivity of the performance index is of interest, especially in those
cases when the index has a valid physical interpretation. Analog
Sensitivity Design extends to this problem quite easily.

Since the J portion of the criterion of the sensitivity design
problem (4.2-1) is determined by the state response it is the part whose
sensitivity is of interest. If the control law m = - K?x is sub-

stituted into the criterion it becomes
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o
I (8 + K- BK) x dt (b.4-1)
0

d

1l

This can be differentiated with respect to the parameter gq to

give the performance index sensitivity

e T
%‘}Il (qo) = SC; [%—%— (s + KTRK)x + XT(S + KTRK) %—E dt (4.4-2)

The vector %3 is recognized as the sensitivity vector =z.

Equation (4.4-2) can then be rewritten as

t
'%% (a,) = Sf - [(S + KRK) + (S + KTRK)T] x dt (h.%-3)
0

If, as is most often the case, 8 and R are diagonal matrices, or

at least symmetriecal, this becomes

4
%‘; (a) =2 S ’ 2X(S + K'RK)x dt (b.b-l)
0

Equation (4.4-L) allows the computation of the performance index
sensitivity at the nominal value of the parameter g = q, once the state
and sensitivity vectors have been calculated. Using Analog Sensitivity
Design permits calculation of (L4.h4-l) simultaneously with the state
sensitivity coefficients. If desired, this performance index sensitivity
integral can be adjoined to J and ?' to form a new index of per-
formance when maximum flatness of the original index J 1is desired.

This brings to light an important point. When dealing with Nature
every improvement has its price and sensitivity design i1s no exception.

The price paid for decreased system sensitivibty to parameter changes is
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degradation in the response of the system when parameters have their nominal
values. The system designed solely on the basis of nominal parameters
will be "better" in some sense for these nominal values and in a small
neighborhood of them. There is a certain critical parameter variation,
however, beyond which the system designed on the basis of sensitivity
concepts will be "better". If the performance index J 1is taken as a
measure of the worth of a system this Trade off can be expressed in the
two curves of J vs. Q@ sketched in Figure L4-6. This shows that the
performance index of the system designed using sensitivity techniques

is flatter than that of the system designed without them, termed the
optimal system, but 1ts minimum value is not as low. For this example
the optimal system is best for <1€i(q1, qe) and the sensitivity design

gystem is better for g outside this range.

4.5 Trimming the Design

One of the unique advantages of the Analog Sensitivity Design
Technigue is the ease with which an initisl design arrived at by
analytical or iterative means can be "trimmed" to meet actual response
sensitivity requirements. As mentioned above, one of the major dis-
advantages of optimal control or any method which arrives at a system
design by minimization of an index of performance is the difficulty of
selecting a meaningful performance criterion. As presented here, the
aubomatic iteration scheme of Analog Sensitivity Design also suffers
from this problem. However when the design process of Figure -2 has
converged on a galin vector K# which minimizes the performance index

A
I=J+J it is then a simple matter to trim these gains about K*
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manually while observing the effect directly on an ocutput device such
as an oscilloscope. Since both the state and sensitivity equations are
being solved simultaneously the designer can examine both the nominal
response and the sensitivity coefficients. If (L4.4-k) is implemented
the initial slope of the performance index J at g = 9, cen also be
displayed. Using all of this information the designer can employ his
Jjudgement and experience with similar systems to arrive at a final set
of gains that afford the best compromise between nominal response and

insensitivity to parameter variations.

4.6 Second Order Example

In order to illustrate the method of Analog Sensitivity Design and
compare the resulting system with other technigues the following example

was used:

Consider the second order differential equation given by (4.6-1)

% = x + m (k.6-1)

x(0) =
-1

Assuming the nominal value of the parameter ¢ 1is equal to one,
qo = 1, makes (h.6—1) a harmonic oscillator with nominal damping equal
to zero. The control input n(t) is to be formed by feedback from dis-
placement and rate variables x2(t) and Xi(t) respectively.

m=-(K K) |x (4.6-2)

X
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Using equation (4.6-1) in the general form of the sensitivity
equation for linear systems with state feedback control (L4.2-3) gives

the equation for the sensitivity coefficients

g -1 -1 1 g ~1 -1
b O
;. = - KT z + _SE. X (4.6-3)
L 1 0 0 0 L

Using the nominal value of the parameter g =1 in (4.6-1) and
(4.6-3), the control law (4.6-2), and performing the indicated differ-
entiation yields the final nominal state equation (L4.6-L4) and sensitivity
equation (4.6-5)

= ~(K5+1) 0
x x(0) = (4.6-1)

°
X

K, ({{24-1) 1 0

N®

(4.6-5)

il
N
+
e}
N

~~
o
~r

[

Note that as required, the homogeneous part of the sensitivity
equation is identical to the state equation.
The performance index selected to represent the desired response of

the system (L4.6-k4) is

10 1 0
J = I X x + - at (4.6-6)

0 o 3

rof-

The sensitivity vector is given considerably higher weighting than

the state vector in order to make the system insensitive to changes in 4,



the damping parameter, by requiring the magnitude of the sensitivity
vector to be kept small.

10
10 0
T =% ] o ( ) z dt (4.6-7)
A 0 10

This problem was first solved using digital parameter optimization

without consideration of the sensitivity index (4.6-7) or constraining
equation (4.6-5). The resulting system response for various parameter
values, shown in Figure U4-7 and Figure 4-8, will serve as a basis with
which desensitization can be compared. The optimal gains were computed

to be

* (2-93
K = (k.6-8)
2.4k

Figure 4-7 and Figure 4-~8 show the rate and displacement initial
" condition response respectively for q = 0.8, 1.0, and 1.2. It is
obvious that there is considerable trajectory dispersion for this range
of parameter values. Figure 4-9 shows the response of the sensitivity
coefficients for this undesensitized case. These were obtained by the
solution of the sensitivity equation (4.6-5) simultaneously with the
state equation using the gains (4.6-8).

Next the sensitivity problem, with the sensitivity index included,
was solved using Dougherty's digital parameter optimization scheme
described in Section 3.4. Recall that this technique solves the two

point boundary value problem (3.4-4) resulting from the application of

the equations of parameter optimization using a first order gradient method.
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Starting from the origin in gain space with both Ki and Ké equal to
zero, convergence to the optimal gains took approximately 15 minutes

on an IBM 360/50 digital computer. These optimal gains were

L.16

K ) (4.6-9)
2.76

The initial condition response of the system using these gaing is
shown in Figure 4-10 and Figure 4-11. Now the trajectory dispersion is
somewhat less than before so the system has been desensitized to some
extent. It can also be seen, however, that the system is somewhat
slower responding than before. This is the price that has been paid
for the desensitization; nominal response has suffered. Figure 4-12
shows the sensitivity coefficients for this system and their reduction
in magnitude over those of Figure L4-8 is immediately apparent.

The identical problem was next solved using the Analog Sensitivity
Design Technique. The simulation diagram is shown in Figure L4-13.
Because of the lack of logic capability on the two EAI TR 20's available,
the Analog Sensitivity Design Technique could not be automated as
described in Section 4.2. However, manual solution of the problem was
carried out exactly as if the flowchart of Figure L-2 had been imple-
mented directly for this system. As in the digltal case the gains were
initialized at zero. The initial step size was taken as X = 0.5. Using

this step size the algorithm converged in 19 iterations to

k.o
K= (4.6-10)
3.0
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FIG. 4—13 SIMULATION DIAGRAM
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The step size was then reduced to K = 0.1 and starting from the
gains of (4.6-10) convergence to

.o

K = (4.6-11)
2.8

took 6 iterations. This convergence to two significant figures took a
total of 25 iterations. Since the repetitive operation mode of the EAT
TR 20 speeds up solutions by a factor of 500, these 25 iterations if
performed automatically would take about 0.5 seconds. This figure does
not of course allow for the time necessary to change the gain potentio-~
meter settings but even so, it makes dramatically clear the advantage
of Analog Sensitivity Design over other methods. Even with manual
adjustment of the gains, the solution took less than two minutes on the
analog computer.

The resulting trajectories of the Analog Sensitivity Design are
exactly the same as those of the parameter optimization method since
the resulting gains were essentially the same. The only advantage up
to this point has been increased speed of solution. Now, however, it
is possgible to trim the values of the feedback gains manually to further
improve the design without having to experiment with many different sets
of welghting matrices. The following figures show the results of
trimming the gains while observing the effect on the nominal response
and. sensitivity coefficients and selecting those which gave the best
compromise between adequate nominal response and minimization of the

sensitivity coefficients. These compromise gains are
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6.0
K = (h.6-12)
3.7

Figure 4-14 and 4-15 show the initial condition response of the
system for various values of the damping parameter q. It is readily
seen that these responses are less sensitive to variations in ¢ tThan
were those of the system shown in Figure 4-10 and Figure 4-11 using the
gains of (4.6-9). The sensitivity coefficients are shown in Figure L-16
and as expected they have the smallest magnitude of the three systems.

It is interesting to compare the eigenvalue sensitivities for the
two desensitized systems using the method of Section 2.4. Recall that
the eigenvalue sensitivity of the system

% = Ax (4.6-13)

is given by

>, v." (a) &2 (q) u(a)
P YR (qo) = T (?T;‘ () (k.6-14)

where (xi, vi) are the eigenvalue-eigenvector pairs of the matrix A
and the u; are the corresponding elgenvectors of the matrix A?.
For the present example the gains (4.6-9) the A matrix is

-h.16 -3.76
A = (4.6-15)
1 0

and the eigenvalue sensitivities which are computed in Appendix C are

A A
bql (a ) = 1.9 %‘Tf’ (a,) = - 0.9 (k.6-16)
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Similarly, for the gains (4.6-12) obtained by using Analog Sensitivity
Design the eigenvalue sensitivities are

22 A
3o (9,) =12 %f— (a,) = - 0:2 (4.6-17)

Thus as could be expected by comparing the trajectories of the two
systems, trimming the gains manually after the automatic iterative design
was complete improved the eigenvalue insensitivity of the system (k.6-1)
as well as the trajectory insensitivity. These two improvéments appear to

go hand in hand.
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CHAPTER 5

CASE STUDY: FLEXIBLE BOOSTER CONTROL

5.1 General

In order to demonstrate the utility of the Analog Sensitivity Design
Téchniqpe developed in Chapter U4, a realistic case study was undertaken.
This chapter examines the problem of developing a feedback control
system for a large flexible booster and desensitizing it to variations
in bending mode frequency. Analog Sensitivity Design is used on a
frozen time point model of the flexible booster to design the control
system. The resulting system is tested by digital simulation using a
time varying model excited by a worst case design wind. This design
wind is constructed to excite any instabilities that are inherent in the
system design.

5.2 The Problem25

Ag launch vehicles become progressively larger and more complex it
becomes more and more difficult to determine the exact values of the
many parameters which effect the performance characteristics. One of
the most difficult sets of data to obtain are those relating to the
flexural modes of the vehicle. It is well known from elementary
mechanics that as the length of an object is inereased and its diameter
decreased, bending response to any off axial forces becomes more pro-
nounced. Typically the length to diameter ratio of today's launch
vehicles is ten to one or higher. Thus the vehicles are quite flexible

and this characteristic must be taken into account in the design of a
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control system. If it is not taken into account then the structural
loading in regions of high dynamic pressure may be such that the elastic
limit of the structure is exceeded and the vehicle destroyed.

Until now the bending characteristic of the vehicle have been
determined by dynamic testing of the actual booster. This involves
m@unting the entire vehicle in a huge tower and shaking it. The result-
ing deflections at different stations along the vehicle are recorded
and a complete bending parameter analysis performed. The wremendous
size of the Saturn V - Apollo configuration shown in Figure 5-1 makes
this operation just marginally possible. For larger vehicles it may
not be possible. Even for the Saturn V - Apollo, however, changing
mission requirements and changing payloads cause the actual bending
characteristics to differ slightly in each vehicle. Thus the bending
characteristics, particularly the natural frequency of each mode, may
not be known accurately enough for successful control of the vehicle.
This is where Analog Sensitivity Design can be used. The problem is to
design a control system for the Saturn V - Apollo that gives adequate
control when the bending frequency may differ from the nominal value by
as much as 20%.

To complicate matters further, the rigid body mode of the vehicle
is aerodynamically unstable. This 1s a result of the center of pressure
being forward of the center of gravity. The aerodynamic forces tend to
rotate the vehicle away from the nominal trajectory. Figure 5-2 shows
plots of the center of pressure and center of gravity during the boost
phase of the flight. The vehicle is obviocusly unstable for all but a

short time around 60 seconds where the center of pressure briefly moves
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off of the center of gravity. Thus continuous engine gimbal angle control
must be used to keep the vehicle in the nominal orientation.

Figure 5~3 shows the frequency spectrum of the Saturn V - Apollo
during the boost phase. 'This spectrum shows the frequencies of all
important modes of the rigid, bending and sloshing bodies. The slosh
modes, which will not be considered here, are a result of the fuel
moving in the tanks as the vehicle flies. The frequencies are spread
out into bands rather than lines at particular frequencies vecause the
dynamic characteristics of the vehicle change with time.

In general there are two types of feedback control systems that can
be considered for the Saturn V: drift minimum and load relief. The
Drift minimum system takes as its major objective the control and
minimization of lateral drift away from the reference trajectory. This
involves the use of pitch, pitch rate and lateral velocity feedback.
‘bThis type of control is used where flexural loading does not play an
important part and lateral drift is detrimental to the mission. Un-
fortunately, under certain conditions a drift minimum control system
can cause excessive structural loads on the Saturn V. Thus it is
necessary to go to a load relief type of control system. The simplest
of these uses only pitch and pitch rate feedback to control the vehicle.
This allows the vehicle to drift with the wind avoiding the buildup of
large bending moments. Other typés of load relief systems are possible,
but this one involving only pitch and pitch rate feedba;k will be
considered here because of its simplicity. Also primarily for simplicity

a control system using constant feedback gains for the entire flight
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will be sought. Several control schemes using programmed gains have
been developed but this will not be attempted here. As will be seen
later in this chapter it is possible to find an entirely successful
control system desensitized to ehanges in bending mode frequency using

constant feedback gains.

5.3 Equations of Motion7’25

The first step in the development of a control system for the
Saturn V - Apollo is the derivation of the differential equations des-
cribing the behavior of the vehicle. First the rigid body equations
are derived assuming a flat earth and considering only the pitch plane
of the vehicle.

As usual in this type of problem it 1s necessary to work with
several co-ordinate systems. The first of these has its origin at the
»launch point with its X and Y axes at the local horizontal and
local vertical respectively. This is known as the inertial co-ordinate
system. The second set of axes moves with the origin at the vehicle
center of gravity. These are the x~y axes with the x axis lying
along the center Lline of the vehicle and the y axis perpendicular to
it in the pitch plane. This is the body fixed co-ordinate system. A
third co-ordinate system has its X.n axls tangential to the nominal
trajectory and its Yn axis perpendicular to it in the pitch plane.
This is called the nominal co-ordinate system. Figure 5-4 shows these
co-ordinate systems with a free body diagram of the vehicle.

Summing forces in the Xn direction gives

Fy = (F+R' cos B-D) cos P-N sin §-R' sin B sin § - mg cos (xc-x) (5.3-1)
n
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Summing forces in the Yn direction gives

F, = (F+R' cos B-D) sin $+N cos $+R' sin p cos P-mg sin(x,-x) (5.3-2)
0 .

Summing torques about the center of gravity gives
If=-R lggsinp - N lgyp (5.3-3)

The angle Xc is the pitch command angle and is determined by the
desired mission profile.

The velocity of the vehicle v can be expressed in terms of the
nominal co-ordinate system as

Y =vcosWtl +v sinV 3' (5.3-4)

- - - R .
where Vv = 'vl and the i and J vectors are unit vectors in the Xn
and Yn directions respectively.
The acceleration of the vehicle, a, is then given by the time

“derivative of (5.3-4)

'5_—__%%cosvt - v sinV i‘%z + v cos Y _Ad_'ft
+_Aa%sj_n\) :]‘.+vcos'0 —%%’3+vsin9 id"% (5.3-5)

The derivatives of the unit vectors are shown in Appendix D to be

given by
- -
'E—-U.)Xl—-xcle—-XcJ

-
=
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Using these relations the acceleration of the vehicle may be ex-
pressed as

-

[ ] * ® -
a =) vcog¥W =-v sin¥V + v sin™W Xc] i

+{"&’r sin¥  + v cosWY - v cos V }.CC] J (5.3-6)

Recognizing the following relations

[ 1 J a [ ] d 9 Py v . PY
Xn—aE(Xn) —a:—(v cosW ) = v cos - v sin'yV
v . (5.3-7)
-4 -4 ; _® ‘ v
Y =3 (Yn) = 3T (v sin¥W ) = v sin'¥ + v cosWYV
allows the vehicle acceleration (5.3-6) to be written as
- L J ® - o8 . -
a = (Xn + v sin'V Xc) i+ (Yn - v cosV Xc) 3 (5.3-8)

If this is substituted into the force balances (5.3-1) and (5.3-2)
the final equations for the motion of the vehicle in terms of the nominal

co~ordinate system result from Newton's Law.
L1 J ® .
m(Xn+vsin\) Xc)=(F+R cos B -D)cos - N sin @

-R' sin B sin § - mg cos X, (5.3-9)

o L ]
m(Y - v cosW X.) =(F+R cos B-D)sinf +N cos §
+R' sin B cos @ - mg sin X, (5.3-10)

These equations can be linearized by making the usual small angle

approximations
‘sin P =@ sin B =B sin B sin § = 0

cosﬂ5=l cos B=1
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Under these assumptions the linearized versions of the vehicle
equations of motion are

*¢ F+R =D

X, == -gcosX, (5.3-11)
* F+R -D, N_R hd .
Yn————T——¢+-m-+I—n—B+vXc-g51nXC (5.3-12)

If the origin of the nominal co-ordinate system is allowed to move
with the vehicle in the Xn direction this eliminates the Xﬁ degree
of freedom leaving only (5.3-12) and (5.3-3) to describe the motion of the
rigid vehicle.

The aerodynamic normal force, N, of (5.3-12) is proportional to the
angle of attack o and is thus given by

N=N «
If the total thrust of the vehicle is denoted by T = F + R' then

* (5.3-12) can be written as

1

oo _ ! ®
Yn=(%]')‘)¢+E‘Q+R_B+[VXC—gSiHXC] (5.3-13)

m m
Usually the vehicle is allowed to fly a gravity turn trajectory in

which cage the pitch command angle is given by

g sin XE

®
X, = —F (5.3-1k4)

v
and the last two terms of (5.3—13) cancel. Thus the final equation

becomes

T-D N' R'
Y =(S) o+ -8 (5.3-15)

Making the small angle approximation on the moment equation (5.3-3)

gives the pitch angle equation
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1

R 1 N1
p=-(—H)g-(—2R)a (5.3-16)

Finally there is the equation relating the pitch angle and the angle

of attack

A

a-aq =p- (5.3-17)

These three equations (5.3-15), (5.3-16) and (5.3-17) completely
describe the linearized rigid body motion of the Saturn V about its
nominal trajectory.

Next the bending effects must be examined. Three bending modes will
be considered to be of significance here: +the first, second, and third.
For simplicity the equations describing these three modes are assumed to
be those of a linear oscillator driven by a forcing function proportional
to the gimbal angle £. These equations are written in terms of normal-

’ ized co-ordinates such that the deformation at any station along the

vehicle is given by the value of the normal co-ordinate multiplied by

the mode shape coefficient for that station. The equations are

R' Y.(x.)
. * 2 _ 1B s _
nli + 231 o, M+ = B B i=1,2,3 (5.3-18)

The normalization 1s taken with respect to the gimbal plane so that
the solution of (5.3—18) gives the actual deflection at the gimbal
directly. DNotice that the forcing function depends on ¥( XB) the mode

- shape at the gimbal station.
As mentioned above, it was decided to use pilteh and pltch rate feed-

back to control the vehicle. The linear control law is given by

P=_K1¢_K2¢° (5.3-19)
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Unfortunately, because of the flexible nature of the Saturn V it
is impossible to measure these quantities directly. Pitch and pitch
rate are meagured by gyros placed somewhere on the vehicle frame. TFor
the Saturn V these positions are

X = 79.8 meters
X = 67.3 meters

regpectively. Thus the gyros can measure only conditions at these
particular points, that is, local pitch and pitch rate. These measure-
ments are corrupted by bending information and are in general impossible
to extract from it. The actual control law that must be implemented

using available measurements is
e

==K f- K by (5.3-20)

where ¢D is the output signal of the pitch gyro and ¢R

. signal of the pitch rate gyro. For the vehicle with three bending modes

is the output

these are, respectively

i=1
(5.3-21)
® ® 3 t Py
R=¢+2Y1(XR)',71 i=1,2,3
i=1
th

1 1 .
The terms ¥, (xD) and Y, (XR) are the mode slopes for the i

mode at the pitch and pitch rate gyro stations.
The equations describing the flexible booster can then be summarized

ag
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?n=(-“3;;9) ¢+§1—'a+£—'-a (5.3-22)
o0 R‘ 1 !
p=-(—2) 8- (N—-—I-lﬂ) o (5.3-23)
oo . R' Y.
M, 2‘1 L mi2 = -——z}-(—x—@—)- B i=1,2,3 (5.3-24)
R
B=-K fy-K ﬂ;R (5.3-25)
3 1
=9 +2 ¥y (xplm (5.3-26)
i=1
* * 3 *
bo=b+2, Yi'(xR)-nzi (5.3-27)
i=1
Y
a-o =p- ;E (5.3-28)

The variable Yn can be eliminated from these equations to give a
more compact set. Solving (5.3-28) for ffn and differentiating with

respect to time gives

¥ -vd-wa-a)-va-a)+pv (5.3-29)

Fquating this with (5.3—22) and solving for o gives

» N ] t t ot
a=-E2-Dprp-EDa-LprFa rs) (5330

Thus the rigid booster is described by (5.3-30) and (5.3-23).

5.4 gtate Equations of the Flexible Booster
Equations (5.3-23), (5.3-~30) and (5.3-24) through (5.3~27) completely

define the system dynamics of the flexible booster model used in this



case study.

following state equation

X =Ax+D g+ u(t)

These can be put into state equation form by defining the

-

(5.4-1)

where‘ x 4is the state vector, B +the scalar gimbal angle, A the vehicle

state matrix, b the controller vector and wu(t) a disturbance vector.

These given by

)

‘Q Q e

Y,

u(t) =

(5.4-2)
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The control law for the state variable model is written as

ﬁ:-K.Tr‘x (5.4-3)

where r1 is a measurement matrix which takes into account the fact that

neither pitch nor pitch rate can be observed directly but are corrupted

by bending. Thus the measurement matrix " is given by

“ ¥, ' (xp) 0

(5.4-4)
o 1 0 0 Y, (xp)

All of these matrix equations have included only one bending mode

for gimplicity. The actual model uses all three modes simultaneocusly

which makes the state eduations somewhat more involved but of the same

form.

The state equations of (5.4-2) with the control law of (5.4-3) are

more difficult to deal with than is necessary. The root of the difficulty

lies in the measurement matrix r1 . If the states % and X, of

(5.4-2) could be measured directly then M would be of the form

Po(:} o)

and could be dropped by simply adjoining extra zero gains to the feedback

K = ( K K { o o0 0 )

The state equations would then be of the form
®
b'd

vector

Ax + b B + u(t)

B =~ K? b

x(0) = ¢

(5.4-5)
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or more simply
:'c=(A-bKT)x+u(t)
x(0) = ¢ (5.4-6)
This simplification can be accomplished by choosing as the state
variable % and. X, the actual measured quantities rather than rigid
body pitch and pitch rate. Using the output of the pitch and pitch rate

gyros as the first and second state variables causes the quantities of

(5.4-6) to become

[ 25\
ARACNL P
x = o (5.4-Ta)

i

0 0 0 0 Yi'(xD)-Yi'(xR)
N!lc;_p_ 1 2 1
0 O -3 T (o o PR N EN
a- &5 1 s D)y e)ER-Y () (5.5-70)
0 0 0 0 1

0 ] 0 -w.2 2%V, w,
i i"i
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0
R'l, R' Y.(x.)
- —=£ ' __ip’
Tt Yy (xg) m,

R!

b= T mv (5.4-7¢c)
0

R Yi(XB)
m,

1

k=(x kK o o0 o) (5.4-7d)

0
0
.
u={ Ta +& (5.4-Te)
0
0

Equation (5.4-6) with the definitions of (5.4-7) represents the
linear time varying description of the Saturn V - Apollo vehicle. A
table of the time varying values of these parameters is included in
Appendix F.

The disturbance term, u(t), contains a function of o and o
which are thus seen to play the role of external disturbances acting on
the vehicle. The selection of a meaningful wind for use in the evaluation

of any control system design is ilmportant and is considered briefly in

the next section.
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5.5 Wind Disturbance

The state equations (5.4-6) and (5.4-7) make it clear that the only
external disturbance acting on the booster in flight is wind. The wind
alters the apparent angle of attack by an amount aW. This can be re-~
lated to the vehicle velocity and wind velocity by examining Figure 5-5
which is a detail of Figure 5-4 for the case when o = ¢ = 0, That is
when the vehicle is on the nominal trajectory. From Figure 5-5

v._cos X

% = %YVW sincXE (5.5-1)
where v 1s the wind velocity, v 1s the vehicle velocity and Xé is
the pitch command angle measured from launch vertical. Using the
nominal values of v and Xc and either measured or assumed values of
Vo a wind angle of attack profile can be constructed for use in the
forcing function wu(t) or (5.4-7). A synthetic wind speed profile,
l;shown in Figure 5-6, was constructed. This profile has wind magnitudes
that exceed those of 95% of the measured winds in the May to November
period at Cape Kennedy, Florida.2 For this reason it is referred to as
a 95% wind. In addition, a severe gust was added in the region of
expected maximum dynamic pressure (max q). This gust will tend to excite
any unstable modes of the vehicle as 1t passes through this region.
Physically, this gust occurs Jjust about the jet stream region which is
thus taken into account in the simulation.

The wind induced angle of attack, Q. that results from this
synthetic wind profile is shown in Figure 5-7. This is the external
disturbance acting on the vehicle and includea in all time varying

simulations.
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FIG. 5-5 WIND ANGLE OF ATTACK
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5.6 The Control Law

An obvious simplification in the design of a control system for
the Saturn V - Apollo would result if the conbtrol signal B8 could be
made a function of only the rigid body pitch and pitch rate rather than
of the measured pitch and'pitch rate given by (5.3-26) and (5.3-27).
Reference to the frequency spectrum of Figure 5-3 makes this appear
possible since the rigid body frequencies and the bending mode frequencies
are separated by almost a decade of frequency. It would appear at first
that a simple low pass filter placed in the feedback loop with a cutoff
frequency of about 0.3 hertz would separate the rigid and bending modes
nicely. The difficulty, however, lies in the slosh modes. These extend
in frequency from the rigid body modes to the first bending mode. Any
low pass filter with a cutoff frequency in this range could add enough
phase shift at these slosh mode frequencies to drive the slosh modes
-unstable. Although consideration of the effects of these slosh is beyond
the scope of this work it was decided to allow for their presence by
restricting the cutoff frequency of any low pass filter to be above one
hertz. With this restriction it was felt that the phase shift caused
by the filter at the slosh frequencies would be small enough to avoid
slosh stability problems.

With this restriction on the cutoff freduency of the filter the
resulting control system becomes sensitive to negative perturbation in
bending frequency, particularly of the first mode. The reason for this
is clear upon examination of Figure 5-8 which is a Bode plot of the
simple second order low pass filter that will'be used. The filter has

the transfer function
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(5.6-1)

The break point frequency of the Bode plot is within the freguency

band of the first bending mode. Thus when the first mode frequency is

perturbed to a lower value, the effective gain at the bending mode

frequencies is increased. This gain increase can be enough to drive one

of the closed loop poles into the right half s-plane with resulting

instability. It will be shown that Analog Sensitivity Design makes

possible a control system that is sufficilently insensitive to changes in

bending mode frequency that this instability does not occur.

With this filter (5.6-1) in the feedback control loop the equations

of the nominal system with o = 0 become

0

Bty p . (Llp) 4

S
1
i

Qe
i
]

3

®
o
-2 ‘i oM, - ™M,

w
it

e K B KAy

U&
il

¢+2 T ()M
i=1

.3 ‘
+':E:]%f(XR%dii

i=

o0 o
B+10B +508 =508,

+

E2-Dygeg-Eada-Eg

R Yi(XB)

m,
L

P

i=1,2,3

(5.6-2a)

(5.6-2b)

(5.6-2¢)

(5.6-24)

(5.6-2¢e)

(5.6-21)
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5.7 Application of Analog Sensitivity Design

Equations (5.6-2) represent the dynamic system to which the
techniques of Analog Sensitivity Design are tb be applied. Because of
the limited analog computation facilities available it was necessary to
design the control system using a frozen time point model of the vehicle.
This involves the choice of a time representative of the critical
portions of the flight at which to evaluate all the time varying
coefficients of equations (5.6-2). The control system is then designed
for the resulting time invariant model. In order to insure the
applicability of the resulting control system it is then tested by
digital simulation using a full time varying model of the flexible
booster.

For the present problem t = 80 seconds after liftoff was taken
as the frozen time point. This represents adequately the portion of
the flight centering around maximum dynemic pressure without exhibiting
the extreme values the vehicle parameters take on exactly at max q.

This portion of the flight is considered the most critical. This choice
turned out to be Jjustified when the system designed using this frozen
point model proved to be able to control the time varying model adequately.

Figure 5-9a and Figure 5-9b show the analog computer simulation
diagram for the booster and sensitivity eqpations. Details of these
similations and the necessary magnitude scaling are given in Appendix E.
It should be noted that the sensitivity equations simulation of
Figure 5-9b is identical to the vehicle simu;ation of Figure 5-9a except

for the two additional inputs added to the (1)12 and. 2’1 W feedback
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terms. This is exactly what the structural method of Section 4.3
indicates. Thus it is not necessary to develop the simulation équations.
of Figure 5-9a and Figure 5-9b separately. All that must be done is
start with the vehicle simulation diagram of Figure 5-9a and apply the
structural rules of Section 4.3.

The first step was to obtain a set of optimal pitch and pitch rate
gains. This was to give a yardstick against which the nominal and off
nominal performance of the desensitized system could be measured. Since
the first bending mode appeared to be the most critical it was the mode
implemented for this study. These optimal gains were obtained using a
piteh initial condition of 5°. The criterion of optimality was a smooth,
well damped rigid body response with stable bending not exceeding 1.0

meters at the gimbal plane. The optimal galns were determined to be

0.8

Kopt =T (0.8) (5.7-1)

The simulation results for +t = 80 seconds with these optimal gains
are shown in Figure 5-10 for the nominal values of the first bending mode
frequency, w = W, The initial value of pitch is seen to damp out guite
rapidly a.nd‘ smoothly to zero. The induced angle of attack also damps
out to zero smoothly although not quite so rapidly as does pitch.
Addition of angle of attack feedback might speed up the decay of the
attack angle but this was not attempted, primarily because of the lack
of adequate angle of attack sensors-on the Saturn V. Normalized bending
and gimbal angle are also shown. The bending stays quite small, less

than 0.9 m. at the gimbal plane. Gimbal angle shows a rather large
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transient of about four degrees and the bending frequency feedback
through the gyros is evident superimposed on it. This transient results
from the rather large initial condition of five degrees in pitch, but
even so it remains Withip the design limit of + 50.

Figure 5~11 shows the response of the same system when the actual
first bending mode frequency is ten percent less than the nominal or
design frequency, ® = 0.9 wo. The rigid body response is essentially
unchanged. The bending, however, has increased considerably over that
of Figure 5-10 and takes longer to decay. The bending is coupled
strongly into the gimbal angle and very small oseillations at the
bending frequency are just visible superimposed on the rigid body
response. The very low damping of the oscillations in the gimbal angle
indicate that stability is becoming marginal.

Figure 5-12 shows the response of the optimal system when. w = 0.8 Wy
lit is clear that the point of unstability has been reached. The bending
reaches a large value almost Immediately and thils is fed back to the
~gimbal through the gyro coupling terms of (5.6-2¢) and (5.6-2f). This
in turn drives the rigid body unstable. The recordings were terminated
at the point where the amplifiers of the analog computer reached saturation.

Next it was attempted to desensitize the vehicle control system by
trimming the feedback gains about the optimal values while observing the
sensitivity coefficients of Figure 5-9b. Two.of the most significant
sensitivity coefficients labelled z), and 2z, are shown in Figure 5-13a

>
for the optimal system where
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_ox on

Y " Do
=D W=
o] o]

5 . (5.7-2)
X d

5 = i{a;' ='2£%

(.l)=ﬂ)o (D=(Do

Recall that w is the natural frequency of the first bending mode,
the parameter to which the system is to be desensitized. (See Appendix D)

By trimming the feedback gains Ki and Ké 1t was possible to
reduce these sensitivity coefficients in magnitude by a factor of about
two without causing the nominal vehicle response of becoming unacceptable.

Thege desensitized feedback gains are

0.5
Keams =~ (o.0) (5.7-3)

. and the resulting sensitivity coefficients are shown in Figure 5-13b.
As expected, there is a definite tradeoff between the magnitude of
the sensitivity coefficients and the optilmality of the nominal response
of the control system. By reducing the sensitivity coefficients as
indicated in Figure 5-13, the nominal response of the vehicle was de-
graded somewhat. The nominal response to a pitch initial condition for
the desensitized system is shown in Figure 5-1L4. It is immediately
evident that the rigid body response is not so well damped as the optimal
system. It is, however, still satisfactory. The bending is slightly
less than for the optimal system and like the optimal system is well
within design limits. The gimbal angle, while having an envelope which

indicates that slightly more energy was used than in the optimal case,
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is of the same general shape as before and the initial transient is
somewhat smaller in magnitude.

While the nominal response of the vehicle is slightly worse for
the desensitized gains (Figure 5-14) than for the optimal gains
(Figure 5-10) it is still satisfactory. If it were not, it would be a
simple matter to trade some of the decrease in the magnitude of the
sensitivity coefficients for a nominal response which more nearly
approaches the optimal. This decision is entirely in the hands of the
designer. By trimming the values of the gains and observing the response
of the sensitivity coefficients and the nominal system simultaneously,
the designer can directly observe the trade off between the two.

Figure 5-15 shows the response of the desensitized system for
w = 0.9 O The response is virtually the same as nominal except for
the bending which is slightly higher.

The desensitized system for w = 0.8 o, is shown in Figure 5-16.
Again the bending has grown slightly larger, although still quite
small, and damps out more slowly. At this point the bending oscillations
have become visible superimposed on the gimbal angle but the rigid body
response is still smooth with no trace of the bending apparent. This
should be compared with the optimal system response with w = 0.8 W,
of Figure 5-12. Clearly Analog Sensitivity Design has extended the
permissible range of bending frequency parameter variation.

Figure 5-17 shows the response of the desensitized system for
w = 0.7 ., & thirty percent deviation in the value of the parameter.

The bending is quibe pronocunced and the oscillations of the gimbal angle
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at the bending frequency indicates that stability is becoming marginal,
but the system is still stable.

The recordings of Figure 5-10 through Figure 5-17 demonstrate the
usefulness and ease of gpplication of Analog Sensitivity Design to
realistic systems of high order, in this case seventh order. It is clear
from the recordings that the frozen time point model of the Saturn V
has indeed been desensitized to changes in the frequency of the first
bending mode. Designing the control system to limit the values of the
sensitivity coefficients resulted in a system that gave satisfactory
response with parameter variations large enough to drive the optimal

system unstable.

5.8 Time Varying Booster Simulation

Section 5.7 showed the resulits obtained when Analog Sensitivity
Design was applied to a seventh order frozen time point model of the
Saturn V - Apollo. It remains to evaluate this control system on a
more realistic time varying model with three bending modes included.

Appendix E gives the complete description of the time varying
eleventh order model used to represent the Saturn V during the boost
phagse of flight. Thils model was implemented by a time varying digital
simulation routine on an IBM 360/50 digital computer. The output of
the simulator was used as input to an analog plotting board to make
the curves shown in Figure 5-18 through Figure 5-23.

The model was started off with zero initial conditions on all states.
The disturbance vector, u(t), was constructed using the design wind

profile discussed in Section 5.5 and shown in Figure 5-6. For evaluation
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of the off nominal response of the vehicle, all three bending mode
frequencies were perturbed by the same percentage. This represents as
closely as possible the actual situation when the bending parameters
are inadeguately known.

Figure 5-18a and Figure 5-18b show the rigid body behavior and
bending mode response respectively of the Saturn V with nominal values
of the bending frequencies, w; = wio, for the optimal value of feedback
gains (5.7—1). The vehicle is obviously stable and the response of all
states remain within satisfactory limits. It is interesting to note
how closely the rigid body states follow the wind induced angle of attack
of PFigure 5-7 for the design wind with peak values of the response
occuring at max gq. This indicates that exact knowledge of the wind
would make possible an alﬁost unperturbed response by simply adding a
signal into the control system to cancel the wind. If the wind was not
) exactly what was expected, however, this additive signal could easily be
worse than none at all. For this reason all the design work was done
assuming zero wind and the design wind used only for evaluation of the
control systems.

As soon as the bending mode frequencies are decreased by ten per-
cent, ;= 0.9 aio, the optimal system goes unstable. This 1s shown in
Figure 5-19a and Figure 5-19b. By comparing these two figures it appears
that the bending becomes unstable first. This is then fed to the gimbal
through the gyro coupling terms in the booster equations and the rigid
body driven unstable. For clarity in this and succeeding figures, when

an unstable regponse goes off scale on the graph, plotting of it is
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terminated so that the remaining quantities may be seen more readily.

Figure 5-20a and Figure 5-20b show the response of the optimal
system for wi = 0.85 wio. For this larger parsmeter perturbation
instability has come more guickly as could be expected.

From these curves it is apparent that while the optimal system
using the gains (5.7-1) gilves satisfactory control for nominal values
of the bending mode frequencies, just a small decrease in these
frequencies from the nominal value is sufficient to cause the system
to go destructively unstable. Desensitization of the vehicle control
system is definiftely needed.

Next the time varying simulation of the Saturn V - Apollo was run
using the desensitized gains of (5.7-3). The response for nominal
bending frequencies is shown in Figure 5-2l1a and Figure 5-21b. If these
are compared with the nominal response for the optimal system.of
. Figure 5-18 it can be seen that the pitch and gimbal angle response are
somewhat larger for the desensitized system. The pitch angle, in
particular, is almost twice as large at its maximu, although still
within acceptable limits. This decrease in the desirability of the
nominal response must be expected and, as discussed in Section 4.4, is
the price that must be paid for decreased system sensitivity.

That the system has indeed been desensitized is apparent from
Figure 5-22a and Figure 5-22b which show the system response for
W, = 0.9 wio. It is very difficult to distinguish this from the nominal
response except for a very slight increase in the magnitude of the bend-

ing at max g.
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Figure 5-23a and Figure 5-23b, with w; = 0.85 a)io offer further
proof of the system insensitivity. Again the only difference between
this response and the nominal response for the desensitized gains is
an increase in the bending around the max g region. Hven for this
fifteen percent perturbation in bending frequency of all three modes,
the response of the vehicle is excellent. This should be compared with

the violently unstable behavior of the optimal system with this large

a parameter perturbation as shown in Figure 5-20.
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CHAPTER 6

SUMMARY AND RECOMENDATIONS

6.1 Summary

This paper has demonstrated that until now there was a definite lack
of a truly useful sensitivity design technigue which enabled the designer
to factor into the design of a dynamic system the desired insensitivity
to certain parameters. BSeveral methods of sensitivity analysis were ex-
amined but none proved to be extendable to a tractable design procedure.
Dougherty's technique of combining the sensitivity equaticns with the
standard parameter optimization problem was shown to require solution of
a two point boundary value problem. Thus, the method is slow to converge
and likely to suffer from numerical problems for high order systems.

Analog Sensitivity Design, developed in Chapter 4, was shown to
léatisfy this lack. It provides a versitile, easy to apply method of
accomplishing the desensitization of virtually any system even if the
describing equations of motion are unknown. As one of 1ts distinct
advantages, the designer can directly observe the tradeoff between system
nominal response and insensitivity to parameter variations.

Using Analog Sensitivity Design it was possible to design a control
system for a seventh order model of the Saturn V - Apollo that was
insensitive to changes in bending mode frequency. This was compared
with an optimal design which became destructively unstable for identical
perturbations in bending mode frequency. The conbtrol system was then

successfully used to control an eleventh order, time varying model of
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the booster disturbed by a design wind for various perturbations of the

bending frequencies of three modes.

6.2 Recomendations for Future Work

There are several extensions of this work that would be of interest
in determining the range of applicability of Analog Sensitivity Design
in practice.

First, because of the limited amount and sophistication of the
analog computation equipment available it was impossible to work with
a time varying dynamic system. For the booster problem a frozen time
point model had to be used. Theoretically, Analog Sensitivity Design
should work just as well using a time varying model and the results would
certainly be more closely related to the response of an actual time
varying dynamic system.

Also because of the analog computation equipment available it was
necegsary to perform the hill climbing iterations manually. Implementation
of the automated technique, described in Chapter U4, using logic elements
would make the mechanics of problem solution essier.

The structural method of Section 4.3 discuss the use of Analog
Sensitivity Design on physical devices with unknown mathematical descrip-
tions. It would be interesting to see how well this actually worked in
practice. Two identical physical systems consisting of the interconnections
of linear blocks of elements would be needed, but actual implementation

should not prove to difficult.
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Kbkotovicll has developed a technique called the method of
"Sensitivity Points" whereby all the sensitivity coefficients of a
system can be obtained simultaneocusly from a single sensitivity model.

Using this method and defining the additional sensitivity coefficients
(6.2-1)

where I is the performance index of Section 4.2 and the K, are the
adjustable gains, it should be possible to develop a gradient technique
for the solution of the Analog Sensitivity Design problem. This would
speed the convergence to a solution and would require very little

additional analog computation equipment.
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APPENDIX A

SENSITIVITY EQUATION INITIAL CONDITIONS

When a parameter variation of the dynamic system (A-1) causes the
initial conditions x(0) to change,
[ ]
x = £(x, t, (lo)

(a-1)
x(0) = c(q)

the analysis of Section 3.3 is no longer valid. To examine the effect
of such parameter variation, consider the following case

x=1f(x, t, ¢ +84)

x(0) = ¢ + & o(q) (8-2)

where the change in initial conditions is due to the perturbation in the
parameter (. |

Using the alternative definition of the sensitivity coefficients
developed in Section 3.3, the initial condition of the sensitivity
equation of (A-E) is

_ x(q, + &aq, 0) - x(q_,0) et B c-c
2(0) = lim Adq B ~ad
&qg=>0 Ag=»0 '

=%—% (a,)

Thus in general, when the initial condition of a dynamic system can

(A-3)

be changed by a parameter variation, the initial condition of the

sensitivity equation is

2(0) = %%91 (a,) (a-1)
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APPENDIX B

ANALYTICITY OF SYSTEM EQUATIONS

The development of the sensitivity coefficients of Chapter 3 depends
on the fact that the differential equation of the dynamic system is
analytic in the parameter ¢. This appendix shows that this does not
hold when a variation of the parameter can change the order of the systenm.

Consider the linear system of (B-1).

n

2 a; g:j: =0 (B-1)

i=0

The stability of this system depends on the sign of the real parts
of the roots of the characteristic equation (B-2)

n

2 ay st =0 (B-2)

i=0

Equation (B-1l) is stable if the roots of (B-2) all have negative
real parts and unstable otherwise.

Now assume a particular variation g of the parameter ¢ in-
creases the order of the system by one. The characteristic equation

then becomes

n
Aq sn+l + E a,;_ s =0 (B-3)
i=0
where ai" i=1,2,...,n are the new values of the a, caused by

the parameter variation.



Dividing (B-3) through by q # O gives

n ]
a ., .
gL +Z 'A"lii st =0 (B-4)

i=0

: +
Thus as bq - 0, g l—-'r - o . Therefore for sufficiently

small & g Jlower order terms can be neglected leaving

t
a,.

i
S TE e e -
Ada (8-5)
which is another way of sgying that the (n+l)St eigenvalue A\ n+l
is given by

1
-3

— n —
Mkl “Ad (B-6)

Thus the solution of (B-1) does not depend analytically on the

small parameter A q.

126.
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APPENDIX C

EIGENVALUE SENSITIVITY

C.1 General

In Section 4.2 the eigenvalue sensitivity of a linear dynamic system

was shown to be

24

r - vy(ag) B (5) wylay)

>4 (a,

(¢.1-1)
R CRENER

where (hi, Vi) are eigenvalue-eigenvector pairs of the system matrix A

and the u, are the corresponding eigenvectors of AT.

This appendix evaluates the eigenvalue sensitivity of the two
desensitized systems of Section 4.6.

The dynamic equations of the system are given by
(g-1) - X ~(K,+1)

1 0

0
-1

where K& = (Ki Ké) are the feedback gains and ¢ is the varying

(c.1-2)

parameter with nominal value 9, = 1.

The first set of gains, denoted by Kﬁ was obtained using Dougherty's

digital desensitization scheme
k.16

K., = (c.1-3)
4 \2.76



128.

The second set of gains, Ké’ was obtained using Analog Sensitivity

(6.0)
K, = (c.1-k)
3.7

C.2 Digital Gains

Design.

Using the digital gains (C.l—3) gives a characteristic equation of

A+ 416 3.76
| nz-al = =0 (c.2-1)
-1 A
which yields eigenvalues of
A o= - 2.82 Ay = - 1.34 (c.2-2)
The corresponding eigenvectors are then given by
1.34 3.76
v, =0
-1 282 ]t
(C.2-3)
2.82 3.76
v, = 0
-1 -1.34
which solve to yield
-2.82 (-1.3&
v = v, = (0-2")'{')
1 1 2 1
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The eigenvectors of the transposed system matrix are given by

1.34 -1
ul=0
3.76 -2.82
- (c.2-5)
2.82 -1
u2=0
3.76 ~1.34

Which, when solved give

(2.) (.
u, = u, = (c.2-6)
A 1.34 2 .80

Using the values from (C.2-2), (C.2-4) and (C.2-6) in the formuls

for eigenvalue sensitivity (C.1-1) gives

oON

-D—‘i— (qo) = 1.9

- (c.2-7)
37 (%) =~ 09

C.3 Analog Sensitivity Design Gains

An analysis similar to that of Section C.2 can be made for the analog

gains (C.1-4). The resulting eigenvalues are
A == 5.07 Ay = = 0.93 (c.3-1)

The eigenvectors of A are

( -5.07) (—0-93 .30)
v, = VA C.3-2
1 1 2 1

]
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and the eigenvectors of A? are
1 ) 1
w = . = (c.3-3)
1
0.93 § 2 5.07

Using these values 'iIn the eigenvalue sensitivity formula gives

A o
35 (%) =123 35 (4) = - 0:23 (c.3-4)
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APPENDIX D

TIME DERIVATIVE OF ROTATING UNIT VECTORS

Figure D-1 shows two coordinate systems. Assume the xyz system
is rotating with angular velocity with respect to the fixed XY7Z
coordinate system. Thus unit vectors in the x, y, z directions are i, j,
k respectively.

Consider one of the unit vectors, call it r, and assume the axis
of rotation is that of Figure D-2. The magnitude of the tangential

velocity 'v = }v] at point P is given by

alo a de
= = amn

T CAiso &% It (>-1)
But the radius is given by
a=r sina (D-2)

Thus combining equations (D-1) and (D-2) gives an expression for
the magnitude of the velocity

v=mr sin o (D-3)

Using (D-3) together with the fact that v is perpendicular to

the plane formed by w and r gives

(D-k)

X

1<
e
I+

But since v 1is the time derivative of r +this can be written as

(D-5)

X

(E]
1€
]

Then using (D-5) with the unit vectors i, j, k in place of the

general unit vector r gives
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FIG. D-1 ROTATING SYSTEM

FIG. D-2 ROTATING VECTOR
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APPENDIX E

ANALOG SIMULATION OF BOOSTER

E.1 Booster Equations

The differential equations of the seventh order model of the

Saturn

v

*®

p

Qe

Be = - K1‘_¢ * Yll(x.D)”L]— K2[¢ * YJ.'(XR)”Ec]

' )

B

For ease in notation these equations will be rewritten as

These eqﬁations completely describe the seventh order booster

model.

- Apollo used in the Analog Sensitivity Design of Section 5.

B e - BBy a

L} t 1
T-D v N v R
- | —— - V) ¢ 4 ¢ - (__ + ;) Q = —— 5

e R'Y (x )
"”12‘”21'2‘1“111+—Tm'i‘—5—

- 50 B - 10 B + 50 B,

p

a23 o + b2 B

L]
a=3,31¢+¢+a3304+'b35

[ T @
M= a5, My + a5y * 25 B

g

[ L

p

il

e = KB remy) - K+ cz"’il)

®
=d_lﬁ+d25+d_3ﬁc

p

(B

(B

(B

(B

(B
(B
(B

(B

(B

13h.

T are

.1-1a)

.1-1b)

.1-1c)

.1-14)

1l-le)

.1-2a)
.1-2b)
.1-2¢)

.1-24)

1-2¢e)
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E.2 BScaling the Model

Before the booster model (E.l-1) can be put on the analog computer
it must be magnitude scaled. This involves choosing maximum values for

all the variables. The assumed maxima are

$ max = 0.5 radians B max = 0.l radians

gzmxx = 0.5 radians @ max = 0.5 radians/sec (E.2-1)
o max = 0.5 radians a max = 0.5 radians/sec

’Olmax = 2.0 meters -';i max = 20.0 mebers/sec

1l

20.0 meters/sec

®
0! max
These figures are quite conservative for a satisfactory control
system hence saturation problems are avoided even for rather large
deviations in response.
Since an EAT TR 20 analog computer has a maximum dynamic range of

~ + 10 volts, these maxima of (E.2-1) should correspond to 10 volts.

Therefore define the scaled or computer variables as

g° =20 ¢ o =20 a 8% = 100 B

.S e S

g® = 20 ¢ M= -5m (E.2-2)
[

1l

#° = 20 ;3' Ms 0.5M

m° 0.55i

®
Tt is most important at this point to note that since " and M

it

are scaled differently,

fRee- (3

at =%Q=%‘:54ls (z.2-3)

S
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‘or leaving out the middle steps

s > s
m = 1OS 'lz at (B.2-4)
Inserting the values of the variables in terms of the scaled
variables from (E.2-2) into the original model equations (E.1-2) gives

the scaled equations

.o
g° = 8,5 o + 0.2 b, B° (E.2-52)
& = By g5 + 56.5 + 8o a® + 0.2 by s (E.2-5b)

J;i.s = 0.1 asulq"s + a5502's + 0.005 by g8 (E.2-5¢)
PCS = - Kl[ 50° + 20 C:L"hs]' K2[5¢S + 200 Ce";lsJ (E.2-54)
. .

p° =) p° +a, p° + a5 p.° (E.2-5¢)

These are the scaled equations that are implemented on the analog

computer. The simulation diagram is shown in Figure 5-9a.
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APPENDIX F

TIME VARYING BOOSTER MODEL

F.1 Mathematical Model

The time varying model of the Saturn V - Apollo used in this study
consists of eleven linearized, first order state equations with time
varying coefficients. The linearized state variables are

xq rigid body pitch angle . ¢

.
X5 rigid body pitch rate ¢
X3 rigid body angle of attack o

x,  normalized first bending mode displacementﬂl
[ J

X, normalized first bending mode rate "ll

Xc normalized second bending mode displacement ‘12

g

x._( normalized second bending mode rate ”l2

Xg normalized third bending mode displacement q'3
®

x9 normalized third bending mode rate "'l 3

o engine gimbal angle .8

[
engine gimbal rate B
11

In terms of these state variables the vehicle equations analogous

to those of Chapter 5 can be written as
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.
0%

;‘2=a23x3+a2,1o X0

:'c3=a3lxl+x2+a33 x3+a3’10 xlo+u(t)

§u=x5

is =85 X + 8ss %s + 85 10%10 (F.1-1)
.

X.6=X'.r

>‘c7=a76 X6+a77x7+a7,10 X4

}.c8=-x9

% = 2g *g ¥ 399 9 T 89 10 F10

’.C.Lolel

®
%1 % 211,10 B0t %1,11 F11 Y P Be

where the time varying coefficients are given by

85 = - N'lep/I 89 10 = " 1%'}{3(3;;6)/m3
3, = - R'leg/I _ 2
2,10 D v all,lO = = W
G oy = - 20 o
a3,lO = - R /mv o
. (_l - v bll = (Df
8337 "\ T ¥ . .
ag), = - wlz u(t) = ¥ % "% (F.1-2)
ST FICY
& 10 = R Yl(xf3>/m1
2
876 = = %
a77 = =2 12 w,
& 10 " R'YE(XB)/m2
2
%98 = T %3
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As discussed in Chapter 5, only the outputs of the pitch and pitch
rate gyros are available for control information. Thus these measurable

varisbles, ¥y and Yo respectively, are given by

Vf’i*“m"u* 16X6+r18x8

(F.1-3)
y2=x2+r25X5+r27X7+P29X9
where the time varying coefficients are given by
v = Yy Gxp) r o5 = ¥y ()
P 116~ Yet(XD) r‘ o7 = sz(xﬁ) (F.1-k)
r18 = ¥3'(xp) r29 = Y5 ()
The feedback control law is of the form
B. = = K ¥ - K 7, (F.1-5)

where K:L and. K2 are the pitch and pitch rate gyro feedback gains,
respectively.
The gimbal angle B is related to the control signal Bc by the

roll off filter characteristic

P+ 2‘ {3+w26=wf25 (r.1-6)
c
where an is the natural frequency of the filter and.f £ is the damping

ratio.



This eleventh order model was implemented on an IBM 360/50 digital
computer using BPS FﬁBTBAN. The output of the program was used to

drive a CALC¢MP plotter to give the curves shown in Chapter 5.

F.2 Numerical. Data

The following pages give the numerical data used in the booster
model. The data are given at 4 second intervals and linear inter-
polation was used between these points. Nomenclature follows that
used in Section F.l and Chapter 5 with the exception that the measure-

ment matrix T‘ is here denoted by the symbol C.

140.
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